With the rapid growth of XML documents to serve as a popular and major media for storage and interchange of the data on the Web, there is an increasing interest in using existing traditional relational database techniques to store and/or query XML data. Since XQuery is becoming a standard XML query language, significant effort has been made in developing an efficient and comprehensive XQuery-to-SQL query processor.
In this thesis, we design and implement an <em>XQuery-to-SQL Query Processor</em> based on the <em>Dynamic Intervals</em> approach. We also provide a comprehensive translation for XQuery basic operations and FLWR expressions. The query processor is able to translate a complex XQuery query, which might include arbitrarily composed and nested FLWR expressions, basic functions, and element constructors, into a single SQL query for RDBMS and a physical plan for the <em>XQuery-enhanced Relational Engine</em>.
In order to produce efficient and concise SQL queries, succinct XQuery to SQL translation templates and the optimization algorithms for the SQL query generation are proposed and implemented. The preferable <em>merge-join</em> approach is also proposed to avoid the inefficient <em>nested-loop</em> evaluation for FLWR expressions. <em>Merge-join</em> patterns and query rewriting rules are designed to identify XQuery fragments that can utilize the efficient <em>merge-join</em> evaluation. Proofs of correctness of the approach are provided in the thesis. Experimental results justify the correctness of our work.
Identifer | oai:union.ndltd.org:WATERLOO/oai:uwspace.uwaterloo.ca:10012/1201 |
Date | January 2004 |
Creators | Chen, Yingwen |
Publisher | University of Waterloo |
Source Sets | University of Waterloo Electronic Theses Repository |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Format | application/pdf, 785324 bytes, application/pdf |
Rights | Copyright: 2004, Chen, Yingwen. All rights reserved. |
Page generated in 0.0019 seconds