Le polynôme caractéristique d'une variété abélienne sur un corps fini est défini comme étant celui de son endomorphisme de Frobenius. La première partie de cette thèse est consacrée à l'étude des polynômes caractéristiques de variétés abéliennes de petite dimension. Nous décrivons l'ensemble des polynômes intervenant en dimension 3 et 4, le problème analogue pour les courbes elliptiques et surfaces abéliennes ayant été résolu par Deuring, Waterhouse et Rück.Dans la deuxième partie, nous établissons des bornes supérieures et inférieures sur le nombre de points rationnels des variétés abéliennes sur les corps finis. Nous donnons ensuite des bornes inférieures spécifiques aux variétés jacobiennes. Nous déterminons aussi des formules exactes pour les nombres maximum et minimum de points rationnels sur les surfaces jacobiennes. / The characteristic polynomial of an abelian variety over a finite field is defined to be the characteristic polynomial of its Frobenius endomorphism. The first part of this thesis is devoted to the study of the characteristic polynomials of abelian varieties of small dimension. We describe the set of polynomials which occur in dimension 3 and 4; the analogous problem for elliptic curves and abelian surfaces has been solved by Deuring, Waterhouse and Rück.In the second part, we give upper and lower bounds on the number of points on abelian varieties over finite fields. Next, we give lower bounds specific to Jacobian varieties. We also determine exact formulas for the maximum and minimum number of points on Jacobian surfaces.
Identifer | oai:union.ndltd.org:theses.fr/2011AIX22038 |
Date | 14 June 2011 |
Creators | Haloui, Safia-Christine |
Contributors | Aix-Marseille 2, Aubry, Yves |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds