• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 8
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Points de Weierstrass et jacobienne de courbes algebriques de genre 3

Girard, Martine 21 July 2000 (has links) (PDF)
Cette these a pour theme la geometrie des courbes algebriques et de leur jacobienne (en caracteristique zero). Elle a, en particulier, pour objet l'etude du groupe engendre dans la jacobienne par les points de Weierstrass pour certaines courbes planes lisses de genre trois. Nous determinons ce groupe pour certaines familles de courbes de genre trois. Pour ce faire, nous procedons en deux etapes. Nous utilisons tout d'abord la geometrie de la courbe et de sa jacobienne pour restreindre le groupe cherche. Les restrictions obtenues par ces arguments geometriques s'avereront etre optimales. Pour demontrer cela, nous utilisons differentes techniques: dans la deuxieme partie, nous appliquons une descente explicite via une isogenie; dans la troisieme partie, nous utilisons des arguments de reduction modulo un nombre premier. Lorsque nous nous interessons a des familles, ces restrictions ``d'ordre geometrique'' s'obtiennent pour toute la famille. Par contre, les techniques mises en oeuvre lors de la seconde etape ne nous donnent le resultat que pour une courbe particuliere. Dans chaque cas, un argument de specialisation nous permet de conclure. De plus, nous determinons ce groupe pour la seule quartique, autre que le quartique de Fermat, possedant le nombre minimal de points de Weierstrass, a savoir douze; la encore, la geometrie de la jacobienne intervient dans la determination de ce groupe. Ces calculs nous permettent de donner des estimations sur le rang de ce groupe et sur la partie de torsion dans le cas d'une quartique generique, selon le nombre de points d'hyper-inflexion (c'est-a-dire de points de la courbe ou la tangente a multiplicite d'intersection quatre avec la courbe).
2

Étude des fibres singulières des systèmes de Mumford impairs et pairs / Study of the singular fibers of the odd and even Mumford systems

Fittouhi, Yasmine 20 January 2017 (has links)
Cette thèse est consacrée à l'étude des fibres de l'application moment du système de Mumford (pair ou impair) d'ordre g>0. Ces fibres sont paramétrées par des courbes hyperelliptiques de genre g. Comme l'a démontré Mumford, la fibre au-dessus d'une telle courbe lisse est la jacobienne de la courbe, moins son diviseur thêta. Nous décrivons les fibres au-dessus d'une courbe singulière, à la fois de manière algébrique et géométrique. Pour ce faire, nous utilisons de façon essentielle les g champs de vecteurs du système de Mumford, qui définissent une stratification de chaque fibre, où chaque strate est isomorphe à une strate particulière (dite maximale) d'une fibre d'un système de Mumford d'ordre inférieur. Sur cette strate, tous les champs de vecteurs du système de Mumford sont linéairement indépendants en tout point. Nous décrivons cette strate comme un ouvert de la jacobienne généralisée d'une courbe hyperelliptique singulière. Nous montrons également que sur la jacobienne généralisée, les champs de Mumford sont des champs invariants par translation. / This thesis is dedicated to the study and to the description of the fibres of the momentum map of the (even or odd) Mumford system of degree g>0. These fibres are parameterized by hyperelliptic curves. Mumford proved that each fiber over a smooth curve is isomorphic to the Jacobian of the curve, minus its theta divisor. We give a geometrical as well as an algebraic description of the fibers over any singular curve. The geometrical description uses in an essential way the g vector field of the Mumford system. They define a stratification of each fiber where each stratum is isomorphic to a particular stratum, called the maximal stratum, of a fiber of a Mumford system of degree at most g. The algebraic description uses the theory of subresultants, which is applied to the polynomials which parametrize the points of phase space. We show that every stratum is isomorphic with an affine part of the generalized Jacobian of a singular hyperelliptic curve. We also prove that the Mumford vector fields are translation invariant on these generalized Jacobians.
3

Algorithmic aspects of hyperelliptic curves and their jacobians

Ivey law, Hamish 14 December 2012 (has links)
Ce travail se divise en deux parties. Dans la première partie, nous généralisons le travail de Khuri-Makdisi qui décrit des algorithmes pour l'arithmétique des diviseurs sur une courbe sur un corps. Nous montrons que les analogues naturelles de ses résultats se vérifient pour les diviseurs de Cartier relatifs effectifs sur un schéma projectif, lisse et de dimension relative un sur un schéma affine noetherien quelconque, et que les analogues naturelles de ses algorithmes se vérifient pour une certaine classe d'anneaux de base. Nous présentons un formalisme pour tels anneaux qui sont caractérisés par l'existence d'un certain sous-ensemble des opérations standards de l'algèbre linéaire pour les modules projectifs sur ces anneaux.Dans la deuxième partie de ce travail, nous considérons un type de problème de Riemann-Roch pour les diviseurs sur certaines surfaces algébriques. Plus précisément, nous analysons les surfaces algébriques qui émanent d'un produit ou d'un produit symétrique d'une courbe hyperelliptique de genre supérieur à un sur un corps (presque) arbitraire. Les résultats principaux sont une décomposition des espaces de sections globales de certains diviseurs sur telles surfaces et des formules explicites qui décrivent les dimensions des espaces de sections de ces diviseurs. Dans le dernier chapitre, nous présentons un algorithme qui produit une base pour l'espace de sections globales d'un tel diviseur. / The contribution of this thesis is divided naturally into two parts. In Part I we generalise the work of Khuri-Makdisi (2004) on algorithms for divisor arithmetic on curves over fields to more general bases. We prove that the natural analogues of the results of Khuri-Makdisi continue to hold for relative effective Cartier divisors on projective schemes which are smooth of relative dimension one over an arbitrary affine Noetherian base scheme and that natural analogues of the algorithms remain valid in this context for a certain class of base rings. We introduce a formalism for such rings,which are characterised by the existence of a certain subset of the usual linear algebra operations for projective modules over these rings.Part II of this thesis is concerned with a type of Riemann-Roch problem for divisors on certain algebraic surfaces. Specifically we consider algebraic surfaces arising as the square or the symmetric square of a hyperelliptic curve of genus at least two over an (almost) arbitrary field. The main results are a decomposition of the spaces of global sections of certain divisors on such surfaces and explicit formulæ for the dimensions of the spaces of sections of these divisors. In the final chapter we present an algorithm which generates a basis for the space of global sections of such a divisor.
4

Calculs dans les jacobiennes de courbes algébriques, applications en géométrie algébrique réelle.

Mahé, Valéry 28 September 2006 (has links) (PDF)
Nous nous intéressons à un aspect quantitatif du dix-septième problème de Hilbert : construire une famille de polynômes en deux variables, à coefficients réels, de degré 8 en l'une des deux variables qui sont positifs mais ne sont pas somme de trois carrés de fractions rationnelles.<br /><br />Comme expliqué par Huisman et Mahé, un polynôme donné P en deux variables à coefficients réels, totalement positif, unitaire, sans facteur carré et de degré multiple de 4 en l'une des variables est une somme de trois carrés de fractions rationnelles si et seulement si la jacobienne d'une certaine courbe hyperelliptique (associée à P) possède un point ”antineutre”.<br /><br />Grâce à ce critère, et en suivant une méthode de Cassels, Ellison et Pfister, nous résolvons notre problème : à l'aide d'une 2-descente, nous montrons que la jacobienne associée à un certain polynôme positif est de rang de Mordell-Weil nul, puis nous vérifions que cette jacobienne n'a aucun point de torsion antineutre.
5

Sur le nombre de points rationels des variétés abéliennes sur les corps finis

Haloui, Safia-Christine 14 June 2011 (has links)
Le polynôme caractéristique d'une variété abélienne sur un corps fini est défini comme étant celui de son endomorphisme de Frobenius. La première partie de cette thèse est consacrée à l'étude des polynômes caractéristiques de variétés abéliennes de petite dimension. Nous décrivons l'ensemble des polynômes intervenant en dimension 3 et 4, le problème analogue pour les courbes elliptiques et surfaces abéliennes ayant été résolu par Deuring, Waterhouse et Rück.Dans la deuxième partie, nous établissons des bornes supérieures et inférieures sur le nombre de points rationnels des variétés abéliennes sur les corps finis. Nous donnons ensuite des bornes inférieures spécifiques aux variétés jacobiennes. Nous déterminons aussi des formules exactes pour les nombres maximum et minimum de points rationnels sur les surfaces jacobiennes. / The characteristic polynomial of an abelian variety over a finite field is defined to be the characteristic polynomial of its Frobenius endomorphism. The first part of this thesis is devoted to the study of the characteristic polynomials of abelian varieties of small dimension. We describe the set of polynomials which occur in dimension 3 and 4; the analogous problem for elliptic curves and abelian surfaces has been solved by Deuring, Waterhouse and Rück.In the second part, we give upper and lower bounds on the number of points on abelian varieties over finite fields. Next, we give lower bounds specific to Jacobian varieties. We also determine exact formulas for the maximum and minimum number of points on Jacobian surfaces.
6

Calcul de représentations galoisiennes modulaires / Computing modular Galois representations

Mascot, Nicolas 15 July 2014 (has links)
J.-P. Serre a conjecturé à la fin des années 60 et P. Deligne a prouvé au début des années 70 que pour toute newform f = q + ∑ n⩾2 a n q n 2 S k (N; "), k ⩾ 2, et tout premier l du corps de nombres Kf = Q(a n ; n ⩾ 2), il existe une représentation galoisienne l-adique pf;l : Gal(Q=Q) ! GL2 (ZKf;l) qui est non-ramifiée en dehors de ℓN et telle que le polynôme caractéristique du Frobenius en p ∤ ℓN est X2 a pX + "(p)p k 1 .Après réduction modulo l et semi-simplification, on obtient une représentation galoisienne pf;l : Gal(Q=Q) ! GL2 (Fl) modulo l, non-ramifiée en dehors de ℓN et telle que lepolynôme caractéristique du Frobenius en p ∤ ℓN est X 2 a pX + "(p)p k 1mod l, d'où un moyen de calcul rapide de ap mod l pour p gigantesque.L'objet de cette thèse est l'étude et l'implémentation d'un algorithme reposant sur cette idée (initialement due à J.-M. Couveignes and B. Edixhoven), qui calcule les coefficients ap modulo l en calculant d'abord cette représentation modulo l, en s'appuyant sur le fait que pour k < ℓ, cette représentation est réalisée dans la ℓ-torsion de la jacobienne de la courbe modulaire X1 (ℓN ).Grâce à plusieurs améliorations, telles que l'utilisation des méthodes de K. KhuriMakdisi pour calculer dans la jacobienne modulaire J1(ℓN ) ou la construction d'une fonction a 2 Q (J1(ℓN )) au bon comportement arithmétique, cet algorithme est très efficace, ainsi qu'illustré par des tables de coefficients. Cette thèse se conclut par la présentation d'une méthode permettant de prouver formellement que les résultats de ces calculs sont corrects. / It was conjectured in the late 60's by J.-P. Serre and proved in the early 70's by P.Deligne that to each newform f = q +Σn ⩾2 anqn 2 Sk(N; "), k ⩾2, and each primel of the number field Kf = Q(an; n ⩾ 2), is attached an l-adic Galois representationPf;l : Gal(Q=Q) ! GL2(ZKf;l ), which is unrami fied outside ℓN and such the characteristicpolynomial of the Frobenius element at p ∤ ℓN is X2 apX +"(p)pk1. Reducing modulo land semi-simplifying, one gets a mod l Galois representation Pf;l : Gal(Q=Q) ! GL2(Fl),which is unrami filed outside ℓN and such that the characteristic polynomial of the Frobeniuselement at p ℓN is X2 apX +"(p)pk1 mod l. In particular, its trace is ap mod l, whichgives a quick way to compute ap mod l for huge p.The goal of this thesis is to study and implement an algorithm based on this idea(originally due to J.-M. Couveignes and B. Edixhoven) which computes the coefficients apmodulo l by computing the mod l Galois representation first, relying on the fact that ifk < ℓ, this representation shows up in the ℓ-torsion of the jacobian of the modular curveX1(ℓN).Thanks to several improvements, such as the use of K. Khuri-Makdisi's methods tocompute in the modular Jacobian J1(ℓN) or the construction of an arithmetically well-behaved function alph 2 Q(J1(ℓN)), this algorithm performs very well, as illustrated bytables of coefficients. This thesis ends by the presentation of a method to formally provethat the output of the algorithm is correct.
7

Minoration de la hauteur de Néron-Tate sur les variétés abéliennes : sur la conjecture de Lang et Silverman.

Pazuki, Fabien 04 July 2008 (has links) (PDF)
Cette thèse est consacrée à l'étude d'une conjecture de Lang et Silverman de minoration de la hauteur de Néron-Tate sur les variétés abéliennes sur les corps de nombres. Le premier chapitre décrit le matériel nécessaire à l'étude des chapitres suivants et fixe les notations et normalisations. On montre dans le second chapitre que la conjecture est vraie pour certaines classes de variétés abéliennes de dimension 2, en particulier pour les jacobiennes ayant potentiellement bonne réduction et restant loin des produits de courbes elliptiques dans l'espace de modules. Le second chapitre renferme aussi des corollaires allant dans la direction de la conjecture de borne uniforme sur la torsion et de majoration uniforme du nombre de points rationnels d'une courbe de genre 2. Le troisième chapitre généralise les résultats de minoration du second chapitre aux jacobiennes de courbes hyperelliptiques de genre g supérieur ou égal à 2. Le quatrième chapitre contient une étude de la restriction des scalaires à la Weil et une étude asymptotique de la hauteur des points de Heegner sur les jacobiennes de courbes modulaires. Le cinquième chapitre est une annexe contenant des formules explicites utiles pour la dimension 2 et un paragraphe sur un raisonnement par isogénies.
8

Anneaux tautologiques sur les variétés Jacobiennes de courbes avec automorphismes et les variétés de Prym généralisées / Tautological rings on Jacobian varieties of curves with automorphisms and generalized Prym varieties

Richez, Thomas 12 May 2017 (has links)
On étudie dans cette thèse les cycles algébriques sur les variétés Jacobiennes de courbes complexes projectives lisses qui admettent des automorphismes non triviaux. Il s'agit plus précisément d'étudier de nouveaux anneaux tautologiques associés à des groupes d’automorphismes de la courbe. On montre que ces Q-algèbres naturelles de cycles algébriques sur les Jacobiennes se restreignent en des familles de cycles sur certaines sous-variétés spéciales de la Jacobienne et que celles-ci méritent encore le nom d'anneaux tautologiques sur ces sous-variétés. On étudie en détail le cas des courbes hyperelliptiques; situation dans laquelle les algèbres introduites admettent un nombre fini de générateurs, et en particulier sont de dimension finie. On peut alors être très précis dans l'étude des relations entre ces générateurs. Enfin, on montre que ces anneaux tautologiques apparaissent naturellement dans un autre contexte : celui des systèmes linéaires complets sans point de base. / In this thesis we study algebraic cycles on Jacobian varieties of smooth projective complex curves with non trivial automorphisms. More precisely, we introduce new tautological rings associated to groups of automorphisms of the curve. We show that these natural Q-algebras of algebraic cycles on Jacobians induce a good notion of tautological rings on some particular subvarieties of the Jacobian. We then study in detail the case of hyperelliptic curves. In this case, the tautological rings admit a finite number of generators, and in particular are of finite dimension. We can then be very precise when studying the relations between these generators. Finally, we present another situation in which these tautological rings appear: when we consider complete linear series without base point.

Page generated in 0.0556 seconds