• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 11
  • Tagged with
  • 31
  • 31
  • 16
  • 12
  • 11
  • 9
  • 9
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Des structures de (quasi-)Poisson quadratiques sur l'algèbre de lacets pour la construction d'un système intégrable sur un espace de modules

Le Blanc, Ariane 21 November 2006 (has links) (PDF)
Cette thèse est un travail conjointement sur l'espace de modules $\mathscr<br />M$ des connexions plates du fibré principal $S\times G$ d'une sphère de<br />Riemann $S$ (ayant $n\geq 3$ bords), où $G=\GL{N,\C}$ et sur l'algèbre de<br />lacets $\tilde\g=\gl{N,\C}(\!(\l^\mi)\!)$. <br /><br />Dans un premier temps, nous étudions une hiérarchie de bidérivations<br />quadratiques sur $\tilde\g$. En particulier, grâce au processus de fusion<br />introduit par Alekseev, Kosmann-Schwarzbach et Meinrenken en 2002, nous<br />extrayons parmi elles une structure $\PB^Q_1$ de quasi-Poisson sur<br />$\tilde\g$. Celle-ci se restreint au sous-espace<br />$\tilde\g_n=\set{\sum_{k=0}^nx^{[k]}\l^k}$.<br /><br />Nous montrons ensuite un résultat de réduction dans un contexte de<br />bidérivation de quasi-Poisson. Il permet d'équipper le quotient $\mathscr<br />A/G:=\set{\Id\l^n+\l Y(\l)+\Id|Y\in\tilde\g_{n-2}}/G$ d'une structure de<br />Poisson induite par $\PB^Q_1$.<br /><br />En s'appuyant sur le système intégrable de Beauville sur<br />$\tilde\g_{n-2}/G$, nous montrons que la famille de fonctions $({\text{tr}}<br />X^k(a))_{k\in\N,a\in\C}$ constitue un système intégrable sur $\mathscr<br />A/G$. Les fonctions que nous considérons sur l'espace de modules $\mathscr<br />M$ sont les tiré-en-arrière $(\mathscr<br />T^*{\text{tr}X^k(a)})_{k\in\N,a\in\C}$, où $\mathscr T:G^n\to\tilde\g_n$<br />est un morphisme de quasi-Poisson et un difféomorphisme local. Nous<br />utilisons ces propriétés de $\mathscr T$ pour montrer que cette famille de<br />fonctions constitue un système intégrable sur $\mathscr M$.
2

Effets de taille finie et dynamique dans les systèmes intégrables unidimensionnels

Colome-Tatche, Maria 17 December 2008 (has links) (PDF)
De nombreux systèmes physiques peuvent être décrits par des modèles unidimensionnels (1D). C'est le cas de certains gaz d'atomes ultrafroids: dans les bonnes conditions leur dynamique a lieu suivant une seule dimension spatiale.<br />Je me suis intéressée à l'étude de quelques aspects des systèmes intégrables à 1D. D'abord je présente une étude de l'état fondamental d'un système de fermions 1D à 2 composants en interactions de contact répulsives. J'utilise l'ansatz de Bethe pour calculer le diagramme de phase du système homogène. Je prends ensuite en compte un piège harmonique et je montre que les atomes s'organisent en deux couches: une phase partiellement polarisée se trouve au centre du piège et une phase totalement polarisée aux bords.<br />Ensuite j'étudie des corrections dues aux effets de taille finie au gap du spectre d'excitations du modèle d'Hubbard 1D. J'obtiens deux termes correctifs aux résultats de la limite thermodynamique: un en loi de puissances inverses en la taille du système L, et un second exponentiel en L. Dans le régime de faible interaction ce deuxième terme peut être important.<br />Finalement j'étudie la réponse d'un système excité à la modulation temporelle de l'interaction entre atomes. Je considère le modèle de Lieb-Liniger et le modèle non-intégrable d'un gaz de fermions avec une impureté mobile. Je montre que le système non-intégrable est sensible à des excitations de fréquences de l'ordre de l'espacement moyen entre niveaux d'énergie, tandis que le système intégrable n'est excité que par des fréquences beaucoup plus grandes. Cet effet peut être utilisé comme test d'intégrabilité dans des systèmes mésoscopiques 1D et pourrait être observé expérimentalement.
3

Approche algébrique des modèles de chaînes de spin et d'autres systèmes exactement solubles en physique quantique

Satta, G. 15 January 2008 (has links) (PDF)
Cette thèse est consacrée à l'étude de la théorie mathématique qui sous-tend la construction et la résolution d'une classe particulière de systèmes quantiques exactement solubles: son objectif est d'utiliser les superalgèbres de Lie comme un outil pour construire et résoudre des chaînes de spins intégrables.<br />Nous développons une approche générale et systématique permettant de construire et traiter simultanément une large classe de systèmes intégrables partageant la même super--symétrie, allant du cas bien connu où tous les sites portent la représentation fondamentale (comme par exemple dans le cas du modèle t-J) à des situations plus complexes d'intérêt physique comprennent chaînes de spins alternée, avec impuretés, etc...<br /><br />Les deux premiers chapitres sont consacrés à un examen des résultats connus concernant le Yangien de la superalgèbre de Lie gl(m|n), nécessaire pour introduire la version graduée de la méthode de diffusion inverse quantique. Nous appliquons notre approche dans le chapitre 3 aux chaînes fermées et dans le chapitre 4 aux chaînes ouvertes. Dans ce chapitre sont étudiés les homologues super--symétriques de l'algèbre de réflexion et du Yangien twisté, qui sont les structures algébriques permettant d'imposer des conditions aux bords qui préservent l'intégrabilité. Dans le dernier chapitre, la méthode dite de fusion est traitée en détail pour des chaînes de spins avec supersymétrie sl(1|2).<br /><br />La méthode de résolution que nous utilisons, tant dans le cas fermé que dans le cas ouvert, est la généralisation au cas supersymétrique de l'Ansatz de Bethe analytique, pour lequel les équations de Bethe paramétrant les nombres quantiques du système sont obtenus comme conditions d'analyticité pour les valeurs propres des Hamiltoniens.
4

Problèmes variationnels liés à l'aire

Romon, Pascal 01 October 2004 (has links) (PDF)
Mes travaux ont porté sur la classification et la rigidité des points critiques de la fonctionnelle d'aire -- variétés minimales et apparentées -- pour des surfaces dans l'espace euclidien ou plus généralement dans certains espaces homogènes. Le cadre est riemannien ou hermitien, et je me suis attaché à comprendre et décrire la structure de l'équation aux dérivées partielles associée au problème géométrique, et celle de ses solutions. En utilisant des paramétrisations conformes, j'ai caractérisé notamment les solutions satisfaisant des conditions géométriques ou topologiques telles que le plongement, la fermeture des périodes en genre un (pour des tores lagrangiens) ou l'isopérimétrie.<br /><br />Dans une première partie, j'aborde essentiellement les surfaces minimales « classiques » dans l'espace euclidien de dimension 3, dont la structure analytique est donnée par la représentation de Weierstrass. Celle-ci peut-être utilisée pour ramener un problème sous contrainte topologico-géométrique (nombre de bouts, courbure totale finie, simple périodicité) à un problème d'analyse complexe sur une surfaces de Riemann, et j'en déduis un théorème de rigidité concernant l'escalier de Riemann. Mais les résultats les plus importants concernent le comportement des bouts minimaux plongés, de courbure totale infinie mais de type fini. On montre en effet que l'hypothèse de plongement contraint considérablement les données de de l'immersion, ce qui a pour conséquence géométrique que la surface est 0-asymptotique à l'hélicoïde. Ce résultat joue un rôle dans la preuve récente par Meeks et Rosenberg de l'unicité de l'hélicoïde comme surface proprement plongée simplement connexe.<br /><br />Dans la seconde partie, j'expose mes travaux sur le problème isopérimétrique dans les espaces plats périodiques de dimension trois. C'est un problème encore ouvert aujourd'hui, qui concerne les surfaces à courbure moyenne constante. J'ai notamment travaillé sur la conjecture sphère-cylindre-plan dans les tores de dimension 3, et démontré des inégalités pointues classifiant les cas (variétés, volumes) où la conjecture est vérifiée. Dans un autre registre, j'ai montré que les surfaces CMC possédant trop de symétries (les retournements diagonaux) ne peuvent être isopérimétriques, à l'exception des sphères bien sûr. Enfin, une étude numérique justifie que ce problème reste si difficile à résoudre.<br /><br />En troisième partie se trouvent mes travaux sur les surfaces lagrangiennes stationnaires hamiltoniennes, dans l'espace euclidien de dimension quatre, et aussi dans les espaces symétriques hermitiens. Après une introduction à ce domaine de la géométrie, on montrera que l'équation aux dérivées partielles de ce problème variationnel est associée à un système intégrable (comme dans le cas des surfaces CMC), avec différentes applications, telles la construction de tores de type fini, ou par potentiel suivant la méthode DPW (via les groupe de lacets). Cette approche est raffinée dans le cas euclidien où une représentation spinorielle permet de décrire explicitement les tores stationnaires hamiltoniens, résolvant même les problèmes de périodes. Enfin une généralisation aux dimensions supérieures est esquissée.
5

Systemes Integrables en Mecanique Classique et Quantique

Zeitlin, Vadim 27 September 2002 (has links) (PDF)
Notre motivation principale dans cette thèse est de développer des méthodes d'étude des systèmes intégrables classiques qui se généralisent directement aux systèmes intégrables quantiques. Pour cela nous commençons par construire explicitement, en utilisant des outils de la géométrie algébrique et les idées de la méthode de séparation des variables, un modèle matriciel de la jacobienne affine d'une courbe spectrale d'ordre $N$ quelconque, généralisant ainsi la construction précédemment connue seulement pour le cas hyperelliptique ($N=2$). A l'aide de ce modèle nous étudions ensuite les cohomologies singulières de la jacobienne affine et nous trouvons une formule nouvelle pour sa caractéristique d'Euler. En étudiant son comportement nous montrons que la structure des cohomologies est bien plus compliquée, dans le cas général, que dans le cas hyperelliptique. Du point de vue des systèmes intégrables notre résultat principal est que l'algèbre des observables est engendrée par l'action des certains champs hamiltoniens sur un nombre fini des coefficients des cohomologies supérieures. Cette observation est surtout importante dans le cas quantique auquel touts nos résultats s'appliquent aussi, en accord avec le programme de ce travail . En effet, ceci implique que les fonctions de corrélation de n'importe quelle observable s'expriment en termes des fonctions de corrélations d'un nombre fini de coefficients des cohomologies supérieures (déformés). Finalement, en utilisant les résultats connus pour le cas hyperelliptique et des considérations semi-classiques, nous formulons une conjecture sur la structure du produit scalaire dans l'espace de Hilbert où l'algèbre des observables quantiques est représentée.
6

L'intégrabilité des réseaux de 2-Toda et de Full Kostant-Toda périodique pour toute algèbre de Lie simple.

Ben Abdeljelil, Khaoula 19 March 2010 (has links) (PDF)
Cette thèse traite essentiellement de deux systèmes intégrables associés à des algèbres de Lie simples. Les deux résultats principaux sont la construction et l'intégrabilité au sens de Liouville des réseaux de 2-Toda et de Full Kostant-Toda périodique sur toute algèbre de Lie simple. Ces réseaux sont l'un et l'autre décrit par un champ hamiltonien associé à un crochet de Poisson qui provient d'une algèbre de Lie munie d'une R-matrice. Nous construisons dans les deux cas une grande famille de constantes de mouvement que nous utilisons pour démontrer l'intégrabilité au sens de Liouville des deux systèmes. Nos constructions et nos démonstrations font appel à de nombreux résultats sur les algèbres de Lie simples, leurs R-matrices, leurs fonctions Ad-invariantes et leurs systèmes de racines.
7

Structures algébriques dans les théories à deux dimensions

Ragoucy, Eric 15 September 2004 (has links) (PDF)
Cette habilitation est consacrée aux structures algébriques intervenant dans les systèmes uni- et bi-dimensionnels étudiés en physique. Nous y montrons comment ces structures peuvent être utilisées pour obtenir une meilleure compréhension des systèmes physiques qu'elles sous-tendent. Nous y décrivons aussi certains de leurs aspects mathématiques.<br /><br />Quatre parties composent cette présentation. Elles décrivent différents domaines de la physique que j'ai étudiés, et dans lesquels les cadres algébriques peuvent s'appliquer, à savoir:<br /><br />- Les théories conformes à deux dimensions, en particulier les algèbres W. Nous présentons la classification de ces dernières et leur quantification en cohomologie BRS.<br /><br />- Les algèbres W finies et leur application en physique (anyons et leurs généralisations) et en mathématique (représentations des algèbres de Lie).<br /><br />- Les structures d'algèbres de Hopf et leur généralisation dynamique, cadre mathématique utilisé dans la partie suivante.<br /><br />- Les systèmes intégrables, avec deux éclairages différents. D'une part, les chaînes de spins, qui décrivent des modèles unidimensionnels de spins en interaction. Nous parlerons des systèmes périodiques, et des systèmes avec bords. D'autre part, les systèmes intégrables en théorie des champs, avec une attention particulière aux systèmes avec bord ou avec impureté.
8

Physique statistique des surfaces aléatoires et combinatoire bijective des cartes planaires

Bouttier, Jérémie 10 June 2005 (has links) (PDF)
Les cartes sont des objets combinatoires apparaissant en physique comme discrétisation naturelle des surfaces aléatoires employées pour la gravité quantique bidimensionnelle ou la théorie des cordes, ainsi que dans les modèles de matrices. Après rappel de ces relations, nous établissons des correspondances entre diverses classes de cartes et d'arbres, autres objets combinatoires de structure simple. Un premier intérêt mathématique de ces constructions est de donner des preuves bijectives, élémentaires et rigoureuses, de plusieurs résultats d'énumération de cartes. Par ailleurs, nous accédons ainsi à une information fine sur la géométrie intrinsèque des cartes, conduisant à des résultats analytiques exacts grâce à une propriété inattendue d'intégrabilité. Nous abordons enfin la question de l'existence d'une limite continue universelle.
9

Approche à la Onsager en systèmes intégrables

Baseilhac, Pascal 13 December 2010 (has links) (PDF)
Une nouvelle approche non-perturbative à la Onsager en systèmes intégrables quantiques est développée, dont les idées maîtresses prennent leurs racines dans l'article de L. Onsager (1944) portant sur la solution exacte du modèle d'Ising en deux dimensions. L'intérêt de cette approche repose sur le fait qu'elle est applicable de façon systématique dans le cas oú d'autres méthodes usuelles échouent. Celle-ci repose sur l'étude de quatres éléments capitaux: (i) L'identification de l'algèbre non-Abélienne de dimension infinie généralisant l'algèbre de Onsager et représentant la condition d'intégrabilité du modèle; (ii) La construction d'une hiérarchie de quantités en involution formant une sous-algèbre Abélienne; (iii) L'étude des réalisations et représentations de dimension finie et infinie de cette algèbre; (iv) La résolution du modèle à l'aide de ces données. Pour un modèle de référence - la chaîne de spin XXZ de taille finie avec conditions aux bords intégrables - la nouvelle approche basée sur l'algèbre q-Onsager introduite par P. Terwilliger est utilisée pour résoudre le problème spectral (spectre en énergie et états propres) dans le régime de paramètres génériques où l'ansatz de Bethe est inapplicable. Certaines étapes essentielles à l'obtention des fonctions de corrélations dans la limite thermodynamique du modèle sont aussi franchies, s'inspirant de la méthode de M. Jimbo et al.. La généralisation associée à toute algèbre de Lie affine de l'algèbre q-Onsager est proposée, et permet de classifier toutes les conditions d'intégrabilité dans les théories de Toda affines avec bord. Diverses perspectives sont enfin présentées.
10

Étude des fibres singulières des systèmes de Mumford impairs et pairs / Study of the singular fibers of the odd and even Mumford systems

Fittouhi, Yasmine 20 January 2017 (has links)
Cette thèse est consacrée à l'étude des fibres de l'application moment du système de Mumford (pair ou impair) d'ordre g>0. Ces fibres sont paramétrées par des courbes hyperelliptiques de genre g. Comme l'a démontré Mumford, la fibre au-dessus d'une telle courbe lisse est la jacobienne de la courbe, moins son diviseur thêta. Nous décrivons les fibres au-dessus d'une courbe singulière, à la fois de manière algébrique et géométrique. Pour ce faire, nous utilisons de façon essentielle les g champs de vecteurs du système de Mumford, qui définissent une stratification de chaque fibre, où chaque strate est isomorphe à une strate particulière (dite maximale) d'une fibre d'un système de Mumford d'ordre inférieur. Sur cette strate, tous les champs de vecteurs du système de Mumford sont linéairement indépendants en tout point. Nous décrivons cette strate comme un ouvert de la jacobienne généralisée d'une courbe hyperelliptique singulière. Nous montrons également que sur la jacobienne généralisée, les champs de Mumford sont des champs invariants par translation. / This thesis is dedicated to the study and to the description of the fibres of the momentum map of the (even or odd) Mumford system of degree g>0. These fibres are parameterized by hyperelliptic curves. Mumford proved that each fiber over a smooth curve is isomorphic to the Jacobian of the curve, minus its theta divisor. We give a geometrical as well as an algebraic description of the fibers over any singular curve. The geometrical description uses in an essential way the g vector field of the Mumford system. They define a stratification of each fiber where each stratum is isomorphic to a particular stratum, called the maximal stratum, of a fiber of a Mumford system of degree at most g. The algebraic description uses the theory of subresultants, which is applied to the polynomials which parametrize the points of phase space. We show that every stratum is isomorphic with an affine part of the generalized Jacobian of a singular hyperelliptic curve. We also prove that the Mumford vector fields are translation invariant on these generalized Jacobians.

Page generated in 0.0745 seconds