• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Problèmes variationnels liés à l'aire

Romon, Pascal 01 October 2004 (has links) (PDF)
Mes travaux ont porté sur la classification et la rigidité des points critiques de la fonctionnelle d'aire -- variétés minimales et apparentées -- pour des surfaces dans l'espace euclidien ou plus généralement dans certains espaces homogènes. Le cadre est riemannien ou hermitien, et je me suis attaché à comprendre et décrire la structure de l'équation aux dérivées partielles associée au problème géométrique, et celle de ses solutions. En utilisant des paramétrisations conformes, j'ai caractérisé notamment les solutions satisfaisant des conditions géométriques ou topologiques telles que le plongement, la fermeture des périodes en genre un (pour des tores lagrangiens) ou l'isopérimétrie.<br /><br />Dans une première partie, j'aborde essentiellement les surfaces minimales « classiques » dans l'espace euclidien de dimension 3, dont la structure analytique est donnée par la représentation de Weierstrass. Celle-ci peut-être utilisée pour ramener un problème sous contrainte topologico-géométrique (nombre de bouts, courbure totale finie, simple périodicité) à un problème d'analyse complexe sur une surfaces de Riemann, et j'en déduis un théorème de rigidité concernant l'escalier de Riemann. Mais les résultats les plus importants concernent le comportement des bouts minimaux plongés, de courbure totale infinie mais de type fini. On montre en effet que l'hypothèse de plongement contraint considérablement les données de de l'immersion, ce qui a pour conséquence géométrique que la surface est 0-asymptotique à l'hélicoïde. Ce résultat joue un rôle dans la preuve récente par Meeks et Rosenberg de l'unicité de l'hélicoïde comme surface proprement plongée simplement connexe.<br /><br />Dans la seconde partie, j'expose mes travaux sur le problème isopérimétrique dans les espaces plats périodiques de dimension trois. C'est un problème encore ouvert aujourd'hui, qui concerne les surfaces à courbure moyenne constante. J'ai notamment travaillé sur la conjecture sphère-cylindre-plan dans les tores de dimension 3, et démontré des inégalités pointues classifiant les cas (variétés, volumes) où la conjecture est vérifiée. Dans un autre registre, j'ai montré que les surfaces CMC possédant trop de symétries (les retournements diagonaux) ne peuvent être isopérimétriques, à l'exception des sphères bien sûr. Enfin, une étude numérique justifie que ce problème reste si difficile à résoudre.<br /><br />En troisième partie se trouvent mes travaux sur les surfaces lagrangiennes stationnaires hamiltoniennes, dans l'espace euclidien de dimension quatre, et aussi dans les espaces symétriques hermitiens. Après une introduction à ce domaine de la géométrie, on montrera que l'équation aux dérivées partielles de ce problème variationnel est associée à un système intégrable (comme dans le cas des surfaces CMC), avec différentes applications, telles la construction de tores de type fini, ou par potentiel suivant la méthode DPW (via les groupe de lacets). Cette approche est raffinée dans le cas euclidien où une représentation spinorielle permet de décrire explicitement les tores stationnaires hamiltoniens, résolvant même les problèmes de périodes. Enfin une généralisation aux dimensions supérieures est esquissée.
2

Systèmes intégrables intervenant en géométrie différentielle et en physique mathématique

Khemar, Idrisse 01 March 2006 (has links) (PDF)
Notre thèse est divisée en 2 chapitres indépendants correspondant chacun à un article. Dans le premier chapitre, nous définissons une notion de surfaces isotropes dans les octonions, i.e. sur lesquelles certaines formes symplectiques canoniques s'annulent. En utilisant le produit vectoriel dans O, nous définissons une application rho de la grassmanienne des plans de O dans la sphère de dimension 6. Cela nous permet d'associer à chaque surface Sigma de O une fonction rho_Sigma de la surface sur la sphère. Alors, nous montrons que les surfaces isotropes de O telles que cette fonction est harmonique sont solutions d'un système complètement intégrable. En utilisant les groupes de lacets, nous construisons une représentation de type Weierstrass de ces surfaces. Par restriction au corps des quaternions, nous retrouvons comme cas particulier les surfaces lagrangiennes hamiltoniennes stationnaires de R^4. Par restriction à Im(H), nous retrouvons les surfaces CMC de R^3. Dans le second chapitre, nous étudions les applications supersymétriques harmoniques définies sur R^{2|2} et à valeurs dans un espace symétrique, du point de vue des systèmes intégrables. Il est bien connu que les applications harmoniques de R^2 à valeurs dans un espace symétrique sont solutions d'un système intégrable. Nous montrons que les applications superharmoniques de R^{2|2} dans un espace symétrique sont solutions d'un système intégrable, et que l'on a une représentation de type Weierstrass en termes de potentiels holomorphes (ainsi qu'en termes de potentiels méromorphes). Nous montrons également que les applications supersymétriques primitives de R^{2|2} dans un espace 4-symétrique donnent lieu, par restriction à R^2, à des solutions du système elliptique du second ordre associé à l'espace 4-symétrique considéré (au sens de C.L. Terng).Ceci nous permet d'obtenir, de manière conceptuelle, une sorte d'interprétation supersymétrique de tous les systèmes elliptiques du second ordre associés à un espace 4-symétrique, en particulier du système intégrable construit au chapitre 1 (et plus particulièrement des surfaces lagrangiennes hamiltoniennes stationnaires dans un espace symétrique).

Page generated in 0.0507 seconds