• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Some problems in neutron physics

Newstead, C. M. January 1967 (has links)
No description available.
2

Quelques structures de Poisson et équations de Lax associées au réseau de Toeplitz et au réseau de Schur / Somes Poisson structures and Lax equations associated with the Toeplitz lattice and the Schur lattice

Lemarié, Caroline 06 November 2012 (has links)
Le réseau de Toeplitz est un système hamiltonien dont la structure de Poisson est connue. Dans cette thèse, nous donnons l'origine de cette structure de Poisson et nous en déduisons des équations de Lax associées au réseau de Toeplitz. Nous construisons tout d'abord une sous-variété de Poisson Hn de GLn(C), ce dernier étant vu comme un groupe de Lie-Poisson réel ou complexe dont la structure de Poisson provient d'un R-crochet quadratique sur gln(C) pour une R-matrice fixée. L'existence d'hamiltoniens associés au réseau de Toeplitz pour la structure de Poisson sur Hn ainsi que les propriétés du R-crochet quadratique permettent alors d'expliciter des équations de Lax du système. On en déduit alors l'intégrabilité au sens de Liouville du réseau de Toeplitz. Dans le point de vue réel, nous pouvons ensuite construire une sous-variété de Poisson Han du groupe Un qui est lui-même une sous-variété de Poisson-Dirac de GLR n(C). Nous construisons alors un hamiltonien, pour la structure de Poisson induite sur Han, correspondant à un autre système déduit du réseau de Toeplitz : le réseau de Schur modifié. Grâce aux propriétés des sous-variétés de Poisson-Dirac, nous explicitons une équation de Lax pour ce nouveau système et nous en déduisons une équation de Lax pour le réseau de Schur. On en déduit également l'intégrabilité au sens de Liouville du réseau de Schur modifié. / The Toeplitz lattice is a Hamiltonian system whose Poisson structure is known. In this thesis, we reveil the origins of this Poisson structure and we derive from it the associated Lax equations for this lattice. We first construct a Poisson subvariety Hn of GLn(C), which we view as a real or complex Poisson-Lie group whose Poisson structure comes from a quadratic R-bracket on gln(C) for a fixed R-matrix. The existence of Hamiltonians, associated to the Toeplitz lattice for the Poisson structure on Hn, combined with the properties of the quadratic R-bracket allow us to give explicit formulas for the Lax equation. Then, we derive from it the integrability in the sense of Liouville of the Toeplitz lattice. When we view the lattice as being defined over R, we can construct a Poisson subvariety Han of Un which is itself a Poisson-Dirac subvariety of GLR n(C). We then construct a Hamiltonian for the Poisson structure induced on Han, corresponding to another system which derives from the Toeplitz lattice : the modified Schur lattice. Thanks to the properties of Poisson-Dirac subvarieties, we give an explicit Lax equation for the new system and derive from it a Lax equation for the Schur lattice. We also deduce the integrability in the sense of Liouville of the modified Schur lattice.
3

L'intégrabilité des réseaux de 2-Toda et de Full Kostant-Toda périodique pour toute algèbre de Lie simple.

Ben Abdeljelil, Khaoula 19 March 2010 (has links) (PDF)
Cette thèse traite essentiellement de deux systèmes intégrables associés à des algèbres de Lie simples. Les deux résultats principaux sont la construction et l'intégrabilité au sens de Liouville des réseaux de 2-Toda et de Full Kostant-Toda périodique sur toute algèbre de Lie simple. Ces réseaux sont l'un et l'autre décrit par un champ hamiltonien associé à un crochet de Poisson qui provient d'une algèbre de Lie munie d'une R-matrice. Nous construisons dans les deux cas une grande famille de constantes de mouvement que nous utilisons pour démontrer l'intégrabilité au sens de Liouville des deux systèmes. Nos constructions et nos démonstrations font appel à de nombreux résultats sur les algèbres de Lie simples, leurs R-matrices, leurs fonctions Ad-invariantes et leurs systèmes de racines.
4

SA-CASSCF and R-matrix calculations of low-energy electron collisions with DNA bases and phosphoric acid

Bryjko, Lilianna January 2011 (has links)
The research presented in this thesis was carried out as part of a collaboration between the groups of Dr Tanja van Mourik at the School of Chemistry, University of St Andrews and Professor Jonathan Tennyson at the Department of Physics and Astronomy at University College London. This thesis presents State-Averaged Complete Active Space Self Consistent Field (SA-CASSCF) calculations on nucleic acid bases, deoxyribose and phosphoric acid H₃PO₄). In the case of uracil, for comparison, Multireference Configuration Interaction calculations were also performed. The SA-CASSCF orbitals were subsequently used in R-matrix electron scattering calculations using the close-coupling model. Of major importance for obtaining accurate SA-CASSCF results is the choice of the active space and the number of calculated states. Properties such as the electronic energy, number of configurations, excitation energy and dipole moment were considered in the choice of active space. Electron-collision calculations were performed on two of the most stable isomers of phosphoric acid, a weakly dipolar form with all OH groups pointing up and a strongly dipolar form where one OH group points down. A broad shape resonance at about 7 eV was found for both isomers. Ten-state close-coupling calculations suggest the presence of narrow, Feshbach resonances in a similar energy region. Elastic and electronically inelastic cross sections were calculated for both isomers. The R-matrix calculations on uracil were done by the group from UCL. R-matrix calculations are currently being done on guanine. Scattering calculations on the other DNA bases will be performed in the near future.
5

The Drinfeld Double of Dihedral Groups and Integrable Systems

Peter Finch Unknown Date (has links)
A little over 20 years ago Drinfeld presented the quantum (or Drinfeld) double construction. This construction takes any Hopf algebra and embeds it in a larger quasi-triangular Hopf algebra, which contains an algebraic solution to the constant Yang–Baxter equation. One such class of algebras consists of the Drinfeld doubles of finite groups, which are currently of interest due to their connections with non-Abelian anyons. The smallest non-commutative Drinfeld double of a finite group algebra is the Drinfeld double of D3 , the dihedral group of order six, which was recently used to construct solutions to the Yang–Baxter equation cor- responding to 2-state and 3-state integrable spin chains with periodic boundary conditions. In this thesis we construct R-matrices from the Drinfeld double of dihedral group algebras, D(Dn) and consider their associated integrable systems. The 3-state spin chain from D(D3) is generalised to include open boundaries and it is also shown that there exists a more general R-matrix for this algebra. For general D(Dn) an R-matrix is constructed as a descendant of the zero-field six-vertex model.
6

The Drinfeld Double of Dihedral Groups and Integrable Systems

Peter Finch Unknown Date (has links)
A little over 20 years ago Drinfeld presented the quantum (or Drinfeld) double construction. This construction takes any Hopf algebra and embeds it in a larger quasi-triangular Hopf algebra, which contains an algebraic solution to the constant Yang–Baxter equation. One such class of algebras consists of the Drinfeld doubles of finite groups, which are currently of interest due to their connections with non-Abelian anyons. The smallest non-commutative Drinfeld double of a finite group algebra is the Drinfeld double of D3 , the dihedral group of order six, which was recently used to construct solutions to the Yang–Baxter equation cor- responding to 2-state and 3-state integrable spin chains with periodic boundary conditions. In this thesis we construct R-matrices from the Drinfeld double of dihedral group algebras, D(Dn) and consider their associated integrable systems. The 3-state spin chain from D(D3) is generalised to include open boundaries and it is also shown that there exists a more general R-matrix for this algebra. For general D(Dn) an R-matrix is constructed as a descendant of the zero-field six-vertex model.
7

Reactions involving exotic nuclei in a discretized-continuum model

Druet, Thomas 29 October 2013 (has links)
The structure of exotic nuclei is one of the main interests in current nuclear physics. Exotic nuclei present unusual properties, such as a low breakup energy, a short lifetime and/or a halo structure. Because of their short lifetimes, they can not be studied by usual spectroscopic techniques. Indeed, targets of such nuclei are impossible to build. But since the availability of radioactive beams, nuclear reactions have provided possibilities of exploring nuclei far from stability.<p><p>The investigation of exotic nuclei has been recently reactivated by the development of intense radioactive nuclear beams. As firstly observed for the deuteron, and then for other exotic projectiles such as $^6$He and $^{11}$Be, the internal structures of the interacting nuclei can have a significant effect on the elastic cross sections. Due to their low binding energy, the projectile dissociation process, leaving the target in its ground state, highly affects elastic cross sections but also other measurements such as transfer and fusion reactions. Accurate reaction theories are therefore needed. The coupled discretized-continuum channel (CDCC) method is one of those theories and assumes a projectile made of N clusters (usually N=2 or 3) impinging on a target which is structureless. The N+1-body Schrödinger equation is approximately solved by expanding the total wave function over the bound and continuum states of the projectile. These latter take into account the dissociation events and are approximately described by a truncated set of square-integrable wave functions. There are two available methods for discretizing the continuum, the pseudostate method where the projectile Hamiltonian is diagonalized within a finite basis of square-integrable functions, or the bin method where exact scattering wave functions of the projectile are averaged over bins in a finite region of space. In both cases, the N+1-body Schrödinger equation is replaced by a set of coupled-channel differential equations, which provides the physical quantities such as the collision matrix. In principle, the CDCC method can be very close to the exact N+1-body wave function and is adapted to low as well as to high energy reactions. However, its main interest consists in the low-energy domain.<p><p>In the present work, we propose a new approach to solve the CDCC equations. This method is based on the R-matrix theory associated with a Lagrange mesh basis. We will show that the combination of both approaches provides a fast and accurate technique to solve the CDCC equations, even for large systems, where traditional methods meet convergence problems. Before investigating collisions with exotic projectiles, we restrict ourselves to the simplest nucleus, the deuteron. Then we make a step towards a more complicated system, the $^6$Li which is a well known stable nucleus. We apply the CDCC method to the d + $^{58}$Ni and $^6$Li + $^{40}$Ca elastic scattering and breakup. These systems are considered in the literature as test cases. They have been investigated by several authors who showed the importance of the breakup channels in the elastic cross sections.<p><p>After having validated the present version of the CDCC method, we focus on $^{11}$Be, a typical example of a halo nucleus, with low binding energy and large quadrupole moment. Elastic, inelastic and breakup cross sections are computed in the CDCC formalism, at energies near the Coulomb barrier, where continuum effects in the scattering of exotic nuclei, and more specifically on the $^{11}$Be + $^{64}$Zn scattering, are observed. We show that converged cross sections need high angular momenta as well as large excitation energies in the wave functions of the projectile.<p><p>A Borromean nucleus is made of three constituents which are weakly linked together, but where each pair of those three constituents does not form a bound system. The name "Borromean" comes from the Borromean rings where, if any one of three rings is removed, the remaining two become unbound. Collisions with $^6$He and $^9$Be Borromean projectiles are studied in the present work. Again we compare our method with the $^6$He + $^{208}$Pb and $^6$He + $^{12}$C benchmark calculations. Afterwards, the convergence against the parameters of the description of the $^9$Be projectile is tested for the elastic cross section. The sensitivity to the technique employed to remove the forbidden states and also the sensitivity to the collision energy are investigated. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
8

Sur les algèbres d'endomorphismes du produit tensoriel de Uq(sl2)-modules en q racine de l'unité

Senécal, Charles 07 1900 (has links)
Ce mémoire porte sur la structure des centralisateurs de l'action de l'extension de Lusztig LUqsl2 du groupe quantique Uqsl2 sur les produits tensoriels de la forme \(M\otimes L_q(1)^{\otimes n}\) en q une racine de l'unité. Ici, n est un entier positif, Lq(1) est la représentation fondamentale de dimension 2 de LUqsl2 et M est un LUqsl2-module simple ou projectif. Dans le cas des modules simples, on analyse l'action du groupe de tresses de type B sur les modules \(L_q(i)\otimes L_q(1)^{\otimes n}\) via les matrices R et on identifie sa structure comme quotient de l'algèbre de Temperley-Lieb à une frontière TLbn. Dans le cas des modules projectifs, on utilise les idempotents de (l,p)-Jones--Wenzl [BLS19, MS22, STWZ23] pour exprimer \(\text{End}_{\mathcal{L}U_q(\mathfrak{sl}_2)}(P_q(i)\otimes L_q(1)^{\otimes n})\) comme une algèbre de Temperley-Lieb valencée [Spe21]. Le chapitre 1 introduit les algèbres de Temperley-Lieb et de Temperley-Lieb à une frontière, par générateurs et relations et de façon diagrammatique, en faisant le lien avec le langage des algèbres cellulaires. Le chapitre 2 présente, après une courte introduction au langage des algèbres de Hopf, le groupe quantique Uqsl2 et l'extension de Lusztig LUqsl2 en q une racine de l'unité. Une partie de sa théorie de la représentation est présentée, ainsi que les matrices R et la dualité de Schur-Weyl quantique. Le chapitre 3 se penche sur l'étude de l'algèbre \(\text{End}_{\mathcal{L}U_q(\mathfrak{sl}_2)}(L_q(i)\otimes L_q(1)^{\otimes n})\). En particulier, il montre que l'action du groupe de tresses de type B sur cet espace se factorise par l'algèbre TLbn, puis montre que le noyau de cette représentation est un idéal engendré par un préidempotent de Jones-Wenzl. Le chapitre 4 présente la construction des idempotents de (l,p)-Jones-Wenzl et la preuve de leurs propriétés clés. Il fait ensuite le lien avec l'algèbre \(\text{End}_{\mathcal{L}U_q(\mathfrak{sl}_2)}(P_q(i)\otimes L_q(1)^{\otimes n})\) et montre qu'elle est isomorphe à un sandwich de l'algèbre de Temperley-Lieb par ces idempotents. / This thesis studies the structure of the centralizers of the action of Lusztig's extension LUqsl2 of the quantum group Uqsl2 on tensor products of the form \(M\otimes L_q(1)^{\otimes n}\) when q is a root of unity. Here, n is a positive integer, Lq(1) is the 2-dimensional fundamental representation of LUqsl2 and M is a simple or projective module over LUqsl2. In the case of simple modules, we analyze the action of the type B braid group on the modules \(L_q(i)\otimes L_q(1)^{\otimes n}\) via the R-matrices and we identify its structure as a quotient of the one-boundary Temperley-Lieb algebra TLbn. In the case of projective modules, we use the (l,p)-Jones-Wenzl idempotents [BLS19, MS22, STWZ23] to write \(\text{End}_{\mathcal{L}U_q(\mathfrak{sl}_2)}(P_q(i)\otimes L_q(1)^{\otimes n})\) as a valenced Temperley-Lieb algebra [Spe21]. Chapter 1 introduces the Temperley-Lieb algebras and the one-boundary Temperley-Lieb algebras, both by generators and relations and diagrammatically, also exhibiting their cellular structure. Chapter 2 gives an introduction to the language of Hopf algebras, then presents the quantum group Uqsl2 and Lusztig's extension LUqsl2 at q a root of unity. Part of its representation theory is given, as well as its R-matrices and quantum Schur-Weyl duality. Chapter 3 focuses on the study of the algebra \(\text{End}_{\mathcal{L}U_q(\mathfrak{sl}_2)}(L_q(i)\otimes L_q(1)^{\otimes n})\). In particular, it shows that the type B braid group action factorizes through the algebra TLbn, then shows that the kernel of this representation is an ideal generated by a Jones-Wenzl preidempotent. Chapter 4 gives the construction of (l,p)-Jones-Wenzl idempotents and proves their key properties. It then makes explicitly the link with the algebra \(\text{End}_{\mathcal{L}U_q(\mathfrak{sl}_2)}(P_q(i)\otimes L_q(1)^{\otimes n})\) and shows that it is isomorphic to a sandwich of the Temperley-Lieb algebra by those idempotents.

Page generated in 0.0516 seconds