• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Règles de fusion pour certains modules remarquables de l’algèbre quantique Uqsl2

Robitaille-Grou, Philippe 08 1900 (has links)
Ce mémoire porte sur la théorie des représentations de l’algèbre quantique Uqsl2 en q une racine de l’unité. Il étudie plus précisément certains modules de l’algèbre LUqsl2, l’extension de Lusztig de Uqsl2, lorsque q² est une p-racine primitive de l’unité pour p un entier supérieur ou égal à 2. Quatre familles de LUqsl2-modules de dimension finie, qualifiés de modules remarquables, sont identifiées : les modules simples et projectifs ainsi que les modules et comodules de Weyl. L’algèbre Uqsl2 possède une structure d’algèbre de Hopf ; cette dernière peut être étendue sur LUqsl2. L’antipode découlant de cette structure permet de définir la notion de dualité de LUqsl2-modules, à partir de laquelle sont construits les comodules de Weyl, tandis que le coproduit permet de définir le produit tensoriel de LUqsl2-modules, aussi appelé la fusion de modules. Le mémoire détermine les règles de fusion des modules remarquables : le produit tensoriel de toute paire de modules remarquables est exprimé comme une somme directe de modules indécomposables. Quoique les règles de fusion entre modules simples et projectifs aient été obtenues par Bushlanov, Feigin, Gainutdinov et Tipunin (cf. [7]), celles impliquant au moins un module ou comodule de Weyl sont nouvelles. / This thesis is devoted to the representation theory of the quantum algebra Uqsl2 for q a root of unity. More precisely it studies some modules of the algebra LUqsl2, the Lusztig extension of Uqsl2, when q² is a primitive p-root of unity for p an integer greater than or equal to 2. Four families of finite dimensional LUqsl2-modules, called remarkable modules, are identified: simple and projective modules as well as Weyl modules and comodules. The algebra Uqsl2 has a Hopf algebra structure; the latter can be extended to LUqsl2. The antipode of this structure is used to define a duality of LUqsl2-modules, from which the Weyl comodules are built, while the coproduct is used to define a tensor product of LUqsl2-modules, also called fusion of modules. This thesis determines the fusion rules of remarkable modules: the tensor product of any pair of remarkable modules is expressed as a direct sum of indecomposable modules. Although the fusion rules between simple and projective modules were obtained by Bushlanov, Feigin, Gainutdinov and Tipunin (cf. [7]), those involving at least one Weyl module or comodule are new.
2

La structure des représentations des algèbres de Temperley-Lieb affines sur la chaîne de spins XXZ

Pinet, Théo 08 1900 (has links)
Ce mémoire révèle la structure des représentations des algèbres de Temperley-Lieb affines aTLN(β) sur les espaces propres CN(q,v,d) (du spin total Sz) des chaînes de spins XXZ périodiques. En particulier, on y démontre que ces représentations, introduites dans Martin/Saleur et Morin-Duchesne/Saint-Aubin, admettent toujours une structure similaire à celle des représentations de Feigin-Fuchs de l’algèbre de Virasoro Vir et que les différentes possibilités, pour la structure d’un Vir-module de Feigin-Fuchs, sont toutes réalisées par un espace propre donné. On introduit aussi une pléthore d’applications aTLN(β)-linéaires entre différents espaces propres en considérant une action naturelle de l’extension de Lusztig LUqsl2 sur les chaînes XXZ périodiques et on caractérise entièrement le noyau ainsi que l’image de ces applications à l’aide de longues suites exactes et d’une décomposition de Clebsch-Gordan généralisée. Finalement, on identifie l’image du morphisme iNd(q,v) défini par Morin-Duchesne/Saint-Aubin et on donne également une nouvelle réalisation explicite pour les couvertures projectives de la catégorie modLUqsl2. / This master’s thesis reveals the structure of the representations of the affine Temperley-Lieb algebras aTLN(β) on the eigenspaces CN(q,v,d) (of the total spin Sz) of the periodic XXZ spin chains. In particular, we show that these representations, introduced by Martin/Saleur and Morin-Duchesne/Saint-Aubin, always admit a structure akin that of the Feigin-Fuchs representations of the Virasoro Vir algebra and that the different possibilities, for the structure of a Feigin-Fuchs Vir-module, are all realized by a given eigenspace. We also give a plethora of aTLN(β)-linear maps between different eigenspaces by considering a natural action of the Lusztig extension LUqsl2 on the periodic XXZ chains and we then fully characterize the kernel and image of these morphisms by means of long exact sequences and a generalized Clebsch-Gordan decomposition. Finally, we explicitly give the image of the intertwiner iNd(q,v) defined by Morin-Duchesne/Saint-Aubin and we also introduce a new explicit realization for the projective covers in the category modLUqsl2.
3

Sur les algèbres d'endomorphismes du produit tensoriel de Uq(sl2)-modules en q racine de l'unité

Senécal, Charles 07 1900 (has links)
Ce mémoire porte sur la structure des centralisateurs de l'action de l'extension de Lusztig LUqsl2 du groupe quantique Uqsl2 sur les produits tensoriels de la forme \(M\otimes L_q(1)^{\otimes n}\) en q une racine de l'unité. Ici, n est un entier positif, Lq(1) est la représentation fondamentale de dimension 2 de LUqsl2 et M est un LUqsl2-module simple ou projectif. Dans le cas des modules simples, on analyse l'action du groupe de tresses de type B sur les modules \(L_q(i)\otimes L_q(1)^{\otimes n}\) via les matrices R et on identifie sa structure comme quotient de l'algèbre de Temperley-Lieb à une frontière TLbn. Dans le cas des modules projectifs, on utilise les idempotents de (l,p)-Jones--Wenzl [BLS19, MS22, STWZ23] pour exprimer \(\text{End}_{\mathcal{L}U_q(\mathfrak{sl}_2)}(P_q(i)\otimes L_q(1)^{\otimes n})\) comme une algèbre de Temperley-Lieb valencée [Spe21]. Le chapitre 1 introduit les algèbres de Temperley-Lieb et de Temperley-Lieb à une frontière, par générateurs et relations et de façon diagrammatique, en faisant le lien avec le langage des algèbres cellulaires. Le chapitre 2 présente, après une courte introduction au langage des algèbres de Hopf, le groupe quantique Uqsl2 et l'extension de Lusztig LUqsl2 en q une racine de l'unité. Une partie de sa théorie de la représentation est présentée, ainsi que les matrices R et la dualité de Schur-Weyl quantique. Le chapitre 3 se penche sur l'étude de l'algèbre \(\text{End}_{\mathcal{L}U_q(\mathfrak{sl}_2)}(L_q(i)\otimes L_q(1)^{\otimes n})\). En particulier, il montre que l'action du groupe de tresses de type B sur cet espace se factorise par l'algèbre TLbn, puis montre que le noyau de cette représentation est un idéal engendré par un préidempotent de Jones-Wenzl. Le chapitre 4 présente la construction des idempotents de (l,p)-Jones-Wenzl et la preuve de leurs propriétés clés. Il fait ensuite le lien avec l'algèbre \(\text{End}_{\mathcal{L}U_q(\mathfrak{sl}_2)}(P_q(i)\otimes L_q(1)^{\otimes n})\) et montre qu'elle est isomorphe à un sandwich de l'algèbre de Temperley-Lieb par ces idempotents. / This thesis studies the structure of the centralizers of the action of Lusztig's extension LUqsl2 of the quantum group Uqsl2 on tensor products of the form \(M\otimes L_q(1)^{\otimes n}\) when q is a root of unity. Here, n is a positive integer, Lq(1) is the 2-dimensional fundamental representation of LUqsl2 and M is a simple or projective module over LUqsl2. In the case of simple modules, we analyze the action of the type B braid group on the modules \(L_q(i)\otimes L_q(1)^{\otimes n}\) via the R-matrices and we identify its structure as a quotient of the one-boundary Temperley-Lieb algebra TLbn. In the case of projective modules, we use the (l,p)-Jones-Wenzl idempotents [BLS19, MS22, STWZ23] to write \(\text{End}_{\mathcal{L}U_q(\mathfrak{sl}_2)}(P_q(i)\otimes L_q(1)^{\otimes n})\) as a valenced Temperley-Lieb algebra [Spe21]. Chapter 1 introduces the Temperley-Lieb algebras and the one-boundary Temperley-Lieb algebras, both by generators and relations and diagrammatically, also exhibiting their cellular structure. Chapter 2 gives an introduction to the language of Hopf algebras, then presents the quantum group Uqsl2 and Lusztig's extension LUqsl2 at q a root of unity. Part of its representation theory is given, as well as its R-matrices and quantum Schur-Weyl duality. Chapter 3 focuses on the study of the algebra \(\text{End}_{\mathcal{L}U_q(\mathfrak{sl}_2)}(L_q(i)\otimes L_q(1)^{\otimes n})\). In particular, it shows that the type B braid group action factorizes through the algebra TLbn, then shows that the kernel of this representation is an ideal generated by a Jones-Wenzl preidempotent. Chapter 4 gives the construction of (l,p)-Jones-Wenzl idempotents and proves their key properties. It then makes explicitly the link with the algebra \(\text{End}_{\mathcal{L}U_q(\mathfrak{sl}_2)}(P_q(i)\otimes L_q(1)^{\otimes n})\) and shows that it is isomorphic to a sandwich of the Temperley-Lieb algebra by those idempotents.

Page generated in 0.0984 seconds