Spelling suggestions: "subject:"depresentation theory off algebra"" "subject:"depresentation theory oof algebra""
1 |
Tilting and Relative Theories in SubcategoriesMohammed, Soud January 2008 (has links)
<p>We show that, over an artin algebra, the tilting functor preserves (co)tilting modules in the subcategories associated to the functor. We also give a sufficient condition for the category of modules of finite projective dimension over an artin algebra to be contravariantly finite in the category of all finitely generated modules over the artin algebra. This is a sufficient condition for the finitistic dimension of the artin algebra to be finite [3].</p><p>We also develop relative theory and in certain subcategories of the module category over an artin algebra in the sense of [10,11]. We use the theory to generalize the main result of [26]</p>
|
2 |
Tilting and Relative Theories in SubcategoriesMohammed, Soud January 2008 (has links)
We show that, over an artin algebra, the tilting functor preserves (co)tilting modules in the subcategories associated to the functor. We also give a sufficient condition for the category of modules of finite projective dimension over an artin algebra to be contravariantly finite in the category of all finitely generated modules over the artin algebra. This is a sufficient condition for the finitistic dimension of the artin algebra to be finite [3]. We also develop relative theory and in certain subcategories of the module category over an artin algebra in the sense of [10,11]. We use the theory to generalize the main result of [26]
|
3 |
Universal D-modules, and factorisation structures on Hilbert schemes of pointsCliff, Emily Rose January 2015 (has links)
This thesis concerns the study of chiral algebras over schemes of arbitrary dimension n. In Chapter I, we construct a chiral algebra over each smooth variety X of dimension n. We do this via the Hilbert scheme of points of X, which we use to build a factorisation space over X. Linearising this space produces a factorisation algebra over X, and hence, by Koszul duality, the desired chiral algebra. We begin the chapter with an overview of the theory of factorisation and chiral algebras, before introducing our main constructions. We compute the chiral homology of our factorisation algebra, and show that the D-modules underlying the corresponding chiral algebras form a universal D-module of dimension n. In Chapter II, we discuss the theory of universal D-modules and OO- modules more generally. We show that universal modules are equivalent to sheaves on certain stacks of étale germs of n-dimensional varieties. Furthermore, we identify these stacks with the classifying stacks of groups of automorphisms of the n-dimensional disc, and hence obtain an equivalence between the categories of universal modules and the representation categories of these groups. We also define categories of convergent universal modules and study them from the perspectives of the stacks of étale germs and the representation theory of the automorphism groups.
|
4 |
Sur la structure cellulaire et la théorie de la représentation des algèbres de Temperley-Lieb à coutureLanglois-Rémillard, Alexis 12 1900 (has links)
No description available.
|
5 |
Règles de fusion pour certains modules remarquables de l’algèbre quantique Uqsl2Robitaille-Grou, Philippe 08 1900 (has links)
Ce mémoire porte sur la théorie des représentations de l’algèbre quantique Uqsl2 en q une racine de l’unité. Il étudie plus précisément certains modules de l’algèbre LUqsl2, l’extension de Lusztig de Uqsl2, lorsque q² est une p-racine primitive de l’unité pour p un entier supérieur ou égal à 2. Quatre familles de LUqsl2-modules de dimension finie, qualifiés de modules remarquables, sont identifiées : les modules simples et projectifs ainsi que les modules et comodules de Weyl. L’algèbre Uqsl2 possède une structure d’algèbre de Hopf ; cette dernière peut être étendue sur LUqsl2. L’antipode découlant de cette structure permet de définir la notion de dualité de LUqsl2-modules, à partir de laquelle sont construits les comodules de Weyl, tandis que le coproduit permet de définir le produit tensoriel de LUqsl2-modules, aussi appelé la fusion de modules. Le mémoire détermine les règles de fusion des modules remarquables : le produit tensoriel de toute paire de modules remarquables est exprimé comme une somme directe de modules indécomposables. Quoique les règles de fusion entre modules simples et projectifs aient été obtenues par Bushlanov, Feigin, Gainutdinov et Tipunin (cf. [7]), celles impliquant au moins un module ou comodule de Weyl sont nouvelles. / This thesis is devoted to the representation theory of the quantum algebra Uqsl2 for q a root of unity. More precisely it studies some modules of the algebra LUqsl2, the Lusztig extension of Uqsl2, when q² is a primitive p-root of unity for p an integer greater than or equal to 2. Four families of finite dimensional LUqsl2-modules, called remarkable modules, are identified: simple and projective modules as well as Weyl modules and comodules. The algebra Uqsl2 has a Hopf algebra structure; the latter can be extended to LUqsl2. The antipode of this structure is used to define a duality of LUqsl2-modules, from which the Weyl comodules are built, while the coproduct is used to define a tensor product of LUqsl2-modules, also called fusion of modules. This thesis determines the fusion rules of remarkable modules: the tensor product of any pair of remarkable modules is expressed as a direct sum of indecomposable modules. Although the fusion rules between simple and projective modules were obtained by Bushlanov, Feigin, Gainutdinov and Tipunin (cf. [7]), those involving at least one Weyl module or comodule are new.
|
6 |
Sur les algèbres d'endomorphismes du produit tensoriel de Uq(sl2)-modules en q racine de l'unitéSenécal, Charles 07 1900 (has links)
Ce mémoire porte sur la structure des centralisateurs de l'action de l'extension de Lusztig LUqsl2 du groupe quantique Uqsl2 sur les produits tensoriels de la forme \(M\otimes L_q(1)^{\otimes n}\) en q une racine de l'unité. Ici, n est un entier positif, Lq(1) est la représentation fondamentale de dimension 2 de LUqsl2 et M est un LUqsl2-module simple ou projectif. Dans le cas des modules simples, on analyse l'action du groupe de tresses de type B sur les modules \(L_q(i)\otimes L_q(1)^{\otimes n}\) via les matrices R et on identifie sa structure comme quotient de l'algèbre de Temperley-Lieb à une frontière TLbn. Dans le cas des modules projectifs, on utilise les idempotents de (l,p)-Jones--Wenzl [BLS19, MS22, STWZ23] pour exprimer \(\text{End}_{\mathcal{L}U_q(\mathfrak{sl}_2)}(P_q(i)\otimes L_q(1)^{\otimes n})\) comme une algèbre de Temperley-Lieb valencée [Spe21].
Le chapitre 1 introduit les algèbres de Temperley-Lieb et de Temperley-Lieb à une frontière, par générateurs et relations et de façon diagrammatique, en faisant le lien avec le langage des algèbres cellulaires. Le chapitre 2 présente, après une courte introduction au langage des algèbres de Hopf, le groupe quantique Uqsl2 et l'extension de Lusztig LUqsl2 en q une racine de l'unité. Une partie de sa théorie de la représentation est présentée, ainsi que les matrices R et la dualité de Schur-Weyl quantique. Le chapitre 3 se penche sur l'étude de l'algèbre \(\text{End}_{\mathcal{L}U_q(\mathfrak{sl}_2)}(L_q(i)\otimes L_q(1)^{\otimes n})\). En particulier, il montre que l'action du groupe de tresses de type B sur cet espace se factorise par l'algèbre TLbn, puis montre que le noyau de cette représentation est un idéal engendré par un préidempotent de Jones-Wenzl. Le chapitre 4 présente la construction des idempotents de (l,p)-Jones-Wenzl et la preuve de leurs propriétés clés. Il fait ensuite le lien avec l'algèbre \(\text{End}_{\mathcal{L}U_q(\mathfrak{sl}_2)}(P_q(i)\otimes L_q(1)^{\otimes n})\) et montre qu'elle est isomorphe à un sandwich de l'algèbre de Temperley-Lieb par ces idempotents. / This thesis studies the structure of the centralizers of the action of Lusztig's extension LUqsl2 of the quantum group Uqsl2 on tensor products of the form \(M\otimes L_q(1)^{\otimes n}\) when q is a root of unity. Here, n is a positive integer, Lq(1) is the 2-dimensional fundamental representation of LUqsl2 and M is a simple or projective module over LUqsl2. In the case of simple modules, we analyze the action of the type B braid group on the modules \(L_q(i)\otimes L_q(1)^{\otimes n}\) via the R-matrices and we identify its structure as a quotient of the one-boundary Temperley-Lieb algebra TLbn. In the case of projective modules, we use the (l,p)-Jones-Wenzl idempotents [BLS19, MS22, STWZ23] to write \(\text{End}_{\mathcal{L}U_q(\mathfrak{sl}_2)}(P_q(i)\otimes L_q(1)^{\otimes n})\) as a valenced Temperley-Lieb algebra [Spe21].
Chapter 1 introduces the Temperley-Lieb algebras and the one-boundary Temperley-Lieb algebras, both by generators and relations and diagrammatically, also exhibiting their cellular structure. Chapter 2 gives an introduction to the language of Hopf algebras, then presents the quantum group Uqsl2 and Lusztig's extension LUqsl2 at q a root of unity. Part of its representation theory is given, as well as its R-matrices and quantum Schur-Weyl duality. Chapter 3 focuses on the study of the algebra \(\text{End}_{\mathcal{L}U_q(\mathfrak{sl}_2)}(L_q(i)\otimes L_q(1)^{\otimes n})\). In particular, it shows that the type B braid group action factorizes through the algebra TLbn, then shows that the kernel of this representation is an ideal generated by a Jones-Wenzl preidempotent. Chapter 4 gives the construction of (l,p)-Jones-Wenzl idempotents and proves their key properties. It then makes explicitly the link with the algebra \(\text{End}_{\mathcal{L}U_q(\mathfrak{sl}_2)}(P_q(i)\otimes L_q(1)^{\otimes n})\) and shows that it is isomorphic to a sandwich of the Temperley-Lieb algebra by those idempotents.
|
Page generated in 0.1323 seconds