Spelling suggestions: "subject:"courbes algébriques"" "subject:"courbes algebraiques""
1 |
Points de Weierstrass et jacobienne de courbes algebriques de genre 3Girard, Martine 21 July 2000 (has links) (PDF)
Cette these a pour theme la geometrie des courbes algebriques et de leur jacobienne (en caracteristique zero). Elle a, en particulier, pour objet l'etude du groupe engendre dans la jacobienne par les points de Weierstrass pour certaines courbes planes lisses de genre trois. Nous determinons ce groupe pour certaines familles de courbes de genre trois. Pour ce faire, nous procedons en deux etapes. Nous utilisons tout d'abord la geometrie de la courbe et de sa jacobienne pour restreindre le groupe cherche. Les restrictions obtenues par ces arguments geometriques s'avereront etre optimales. Pour demontrer cela, nous utilisons differentes techniques: dans la deuxieme partie, nous appliquons une descente explicite via une isogenie; dans la troisieme partie, nous utilisons des arguments de reduction modulo un nombre premier. Lorsque nous nous interessons a des familles, ces restrictions ``d'ordre geometrique'' s'obtiennent pour toute la famille. Par contre, les techniques mises en oeuvre lors de la seconde etape ne nous donnent le resultat que pour une courbe particuliere. Dans chaque cas, un argument de specialisation nous permet de conclure. De plus, nous determinons ce groupe pour la seule quartique, autre que le quartique de Fermat, possedant le nombre minimal de points de Weierstrass, a savoir douze; la encore, la geometrie de la jacobienne intervient dans la determination de ce groupe. Ces calculs nous permettent de donner des estimations sur le rang de ce groupe et sur la partie de torsion dans le cas d'une quartique generique, selon le nombre de points d'hyper-inflexion (c'est-a-dire de points de la courbe ou la tangente a multiplicite d'intersection quatre avec la courbe).
|
2 |
Courbes algébriques réelles et courbes pseudoholomorphes réelles dans les surfaces régléesBrugallé, Erwan 10 December 2004 (has links) (PDF)
Cette thèse est motivée par l'étude des courbes algébriques réelles dans le plan projectif réel et dans les surfaces rationnelles géométriquement réglées, munis de leur structure réelle standard. Deux problèmes ont particulièrement retenus notre attention. Les ovales d'une courbe non singulière dans dans le plan projectif réel de degré pair sont naturellement divisés en deux ensembles disjoints : les ovales pairs, contenus dans un nombre pair d'ovales, et les ovales impairs. La combinaison des inégalités de Harnack et de Petrovsky permet d'obtenir une borne supérieure pour le nombre d'ovales pairs et le nombre d'ovales impairs en fonction du degré de la courbe. Généralisant une construction antérieure d'I. Itenberg, nous montrons que cette borne est asymptotiquement optimale. La majorité des restrictions connues sur la topologie des courbes algébriques réelles sont aussi valables pour une classe plus vaste d'objets, les courbes pseudoholomorphes réelles. Un problème ouvert est celui de l'existence d'un schéma réel réalisable par une courbe pseudoholomorphe réelle non singulière, mais pas par une courbe algébrique réelle non singulière de même degré. Nous étudions dans cette thèse les courbes réelles non singulières symétriques de degré 7 dans le plan projectif réel, algébriques et pseudoholomorphes. Nous obtenons en particulier plusieurs classifications, et exhibons deux schémas réels réalisables par des courbes pseudoholomorphes réelles séparantes symétriques non singulières de degré 7 mais pas par de telles courbes algébriques. Certains des résultats de cette thèse sont basés sur l'utilisation des dessins d'enfants. En géométrie algébrique réelle, ces objets ont été utilisés la première fois par S. Yu. Orevkov. Ils permettent en particulier de répondre à la question suivante : Existe-t-il deux polynômes réels P et Q de degré n tels que les racines réelles de P, Q et P+Q réalisent un arrangement donné? Suivant Orevkov, nous donnons une condition nécessaire et suffisante à l'existence de deux tels polynômes, formulée en terme de dessins d'enfants. Nous donnons aussi un algorithme permettant d'établir si un L-schéma donné est réalisable par une courbe algébrique réelle trigonale.
|
Page generated in 0.0441 seconds