Oxylipine sind Signalmoleküle, welche durch die enzymatische oder nicht-enzymatische Oxidation von Fettsäuren gebildet werden. Eine bedeutende Gruppe von Oxylipinen in Pflanzen sind die Jasmonate. Dazu zählen Jasmonsäure (JA), deren Vorstufe 12-Oxophytodiensäure (OPDA) sowie deren Metabolite. Ein bedeutender Metabolit von JA ist das Aminosäure-Konjugat JA-Isoleucin (JA-Ile), welches hohe biologische Aktivität besitzt. Besonders für die oberirdischen Organe von Pflanzen wurden bisher vielfältige Funktionen von Jasmonaten beschrieben. Sie sind beteiligt an verschiedenen Entwicklungsprozessen wie der Fertilität von Blüten, aber auch an der Abwehr von Pathogenen und Herbivoren und bei der Reaktion von Pflanzen auf abiotische Stressoren wie hohe Salzkonzentrationen oder Trockenheit. Über die Bildung und Funktion von Oxylipinen in Wurzeln ist bisher jedoch nur wenig bekannt. Aus diesem Grund wurden in der vorliegenden Arbeit die Gehalte von Galaktolipiden und Jasmonaten in Spross und Wurzel von Arabidopsis thaliana Pflanzen verglichen. Mit Hilfe verschiedener JA Biosynthese-Mutanten konnte zudem die Bildung von Jasmonaten in der Wurzel und deren biologische Funktion in diesem Pflanzenorgan untersucht werden. Um die Wurzeln der Arabidopsis Pflanzen einfach behandeln zu können und um schnell und stressfrei größere Mengen von Wurzelmaterial ernten zu können, wurde ein hydroponisches Anzuchtsystem etabliert. Die Analyse von Galaktolipiden zeigte, dass in der Wurzel deutlich geringere Galaktolipid Gehalte als im Spross vorhanden sind. Da Galaktolipide den Hauptbestandteil plastidärer Membranen ausmachen, in den Wurzeln insgesamt jedoch weniger Plastiden vorkommen als in Blättern, wäre dies ein möglicher Grund für den beobachteten Unterschied. Das Vorkommen von mit OPDA oder dnOPDA veresterten Galaktolipiden (Arabidopsiden) wird in der Literatur für die Thylakoidmembranen der Chloroplasten beschrieben. Die Analyse der Arabidopsid Gehalte von Wurzeln konnte diese Aussage stützen, da in Wurzeln, welche normalerweise keine Chloroplasten besitzen, nahezu keine Arabidopside detektiert werden konnten. Die Analyse der Jasmonate zeigte anhand von Pfropfungsexperimenten mit der Jasmonat-freien dde2 Mutante, dass die Wurzeln unabhängig vom Spross in der Lage sind Jasmonate zu bilden, obwohl die Expression vieler JA-Biosynthese-Gene in den Wurzeln sehr gering ist. Zudem zeigten diese Experimente, dass es keinen direkten Transport von Jasmonaten zwischen Spross und Wurzel gibt. Die Bildung von Jasmonaten in der Wurzel konnte durch verschiedene Stresse wie Verwundung, osmotischen Stress oder Trockenheit induziert werden. Kälte und Salzstress hatten hingegen keinen Jasmonat-Anstieg in den Wurzeln zur Folge. Anders als bei osmotischem Stress und Trockenheit, wo sowohl die Gehalte von OPDA als auch von JA und JA-Ile anstiegen, konnte bei Verwundung keine Zunahme der OPDA-Spiegel detektiert werden. Hier kam es zu einer deutlichen Abnahme, wohingegen die JA und JA-Ile Spiegel sehr stark anstiegen. Dies deutet darauf hin, dass es sehr komplexe und vielfältige Regulationsmechanismen hinsichtlich der Bildung von Jasmonaten gibt. Der erste Schritt der JA-Biosynthese, die Bildung von 13-Hydroperoxyfettsäuren (HPOTE), wird durch 13-Lipoxygenase (LOX) Enzyme katalysiert. In Arabidopsis sind vier unterschiedliche 13-LOX Isoformen bekannt. Die Untersuchung verschiedener 13-LOX-Mutanten ergab, dass nur die LOX6 an der Biosynthese von Jasmonaten in der Wurzel beteiligt ist. So konnten in Wurzeln der lox6 Mutante weder basal noch nach verschiedenen Stressen bedeutende Mengen von Jasmonaten gemessen werden. Im Spross dieser Mutante war basal kein OPDA vorhanden, nach Stresseinwirkung wurden jedoch ähnliche Jasmonat Gehalte wie im Wildtyp detektiert. Um Hinweise auf die biologische Funktion von Jasmonaten in Wurzeln zu erhalten, wurden Untersuchungen mit einer lox6 KO Mutante durchgeführt. Dabei zeigte sich, dass abgeschnittene lox6 Wurzeln, welche keine Jasmonate bilden, im Vergleich zum Wildtyp von saprobiont lebenden Kellerasseln (Porcellio scaber) bevorzugt als Futter genutzt werden. Blätter dieser Mutante, welche nach Stress annähernd gleiche Jasmonat Gehalte wie der Wildtyp aufweisen, wurden nicht bevorzugt gefressen. Von der Jasmonat-freien dde2 Mutante wurden hingegen sowohl die Wurzeln als auch die Blätter bevorzugt gefressen. Neben den Experimenten mit Kellerasseln wurden auch Welke-Versuche mit lox6 und dde2 Pflanzen durchgeführt. Hierbei wiesen die lox6 Pflanzen, nicht aber die dde2 Pflanzen, eine erhöhte Suszeptibilität gegenüber Trockenheit auf. dde2 Pflanzen haben im Gegensatz zu LOX Mutanten unveränderte 13-HPOTE Gehalte, aus denen auch andere Oxylipine als Jasmonate gebildet werden können. Dies zeigt, dass durch LOX6 gebildete Oxylipine, im Falle von Trockenheit aber nicht Jasmonate, an der Reaktion von Arabidopsis Pflanzen auf biotische und abiotische Stresse beteiligt sind. / Oxylipins are signaling molecules derived by enzymatic or non-enzymatic oxidation of fatty acids. Jasmonates are one important group of oxylipins in plant. This group includes jasmonic acid (JA), its precursor 12-oxophytodienoic acid, and all JA metabolites. The amino acid conjugate JA-isoleucine (JA-Ile) is one relevant metabolite of JA which shows high biological activity. For the aerial parts of plants, many different functions of jasmonates have been described. Jasmonates are involved in developmental processes like the flower fertility. Furthermore, these compounds function as signals in defense reactions against pathogens and herbivores and in the response to abiotic stress like high salt concentrations or drought. For roots, much less is known about the formation and function of jasmonates. Therefore, in this work the levels of galactolipids and jasmonates in roots of Arabidopsis thaliana in comparison to leaves were analyzed. Using mutants in different steps of jasmonate biosynthesis the formation and biological function of jasmonates in roots were investigated. For easy handling, treatment, and harvest of root material a hydroponic system was established. The analysis of galactolipids showed reduced contents of these compounds in roots in comparison to the shoots. These differences might occur due to the fact that galactolipids are the main compounds of plastid membranes and that roots in general contain less plastids than the leaves. In the literature it is described, that galactolipids esterified with OPDA or dnOPDA (arabidopsides) only occur in the thylakoid membranes of chloroplasts. The analysis of arabidopsid contents in roots supports this statement since nearly no arabidopsides were detectable in roots, which do normally not have chloroplasts. The analysis of jasmonates with different grafting experiments using the jasmonate free dde2 mutant showed that roots were able to synthesize jasmonates independently of the shoot although the expression of several JA biosynthesis genes is very low. These experiments also pointed out that there is no transport of jasmonates between the shoot and the root. Jasmonates accumulated in roots upon different stresses such as wounding, osmotic stress, or drought. Cold and salt stress did not lead to increased jasmonate levels in the roots. Osmotic and drought stress resulted in an increase of all three analyzed jasmonates whereas after wounding only JA and JA-Ile showed higher concentrations. OPDA levels strongly decreased after this type of stress. This suggests the existence of diverse and complex regulatory mechanisms of stress-induced jasmonate synthesis. 13-lipoxygenase (13-LOX) enzymes are involved in the first step of the JA biosynthesis, the formation of 13-hydroperoxy fatty acids (HPOTE), and four 13-LOX isoforms exist in Arabidopsis. Investigation of different 13-LOX mutants revealed that only the LOX6 enzyme is involved in the biosynthesis of jasmonates in roots. In roots of the lox6 mutant no jasmonate levels were detectable, neither basal nor after different stress treatments. In the shoot of this mutant no basal OPDA was measurable. However, after stress treatment nearly the same amounts of jasmonates were detected. To investigate the function of jasmonates in roots a lox6 KO mutant was used. The experiments showed that detached roots of the lox6 mutant which do not produce jasmonates were the preferred food of the detritivorous crustacean Porcellio scaber in comparison to roots of the wild type. Detached leaves of this mutant which show nearly the same amount of jasmonates after stress like the wild type were not eaten faster. However, detached roots and leaves of the jasmonate free dde2 mutant were both preferred in comparison to the wild type. Besides the investigations with P. scaber also drought experiments were carried out. The lox6 mutant but not dde2 was more susceptible to drought. In contrast to LOX mutants, dde2 plants show unaltered levels of 13-HPOTE which can also be converted to other oxylipins than jasmonates. This indicates that LOX6 derived oxylipins are important for the response to biotic and abiotic factors. However, concerning to drought this is not the case for jasmonates.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:6464 |
Date | January 2012 |
Creators | Grebner, Wiebke |
Source Sets | University of Würzburg |
Language | deu |
Detected Language | German |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://opus.bibliothek.uni-wuerzburg.de/doku/lic_ohne_pod.php, info:eu-repo/semantics/openAccess |
Page generated in 0.0026 seconds