Let (E,h) be a holomorphic, Hermitian vector bundle over a polarized manifold. We provide a canonical quantisation of the Laplacian operator acting on sections of the bundle of Hermitian endomorphisms of E. If E is simple we obtain an approximation of the eigenvalues and eigenspaces of the Laplacian. In the case when the bundle E is the trivial line bundle, we quantise solutions to the heat equation on the manifold. Furthermore we show that geometric quantisation can be seen as the differential of a natural map between two Riemannian manifolds. Motivated by this fact we compute its next order approximation, namely its Hessian. / Option Mathématique du Doctorat en Sciences / info:eu-repo/semantics/nonPublished
Identifer | oai:union.ndltd.org:ulb.ac.be/oai:dipot.ulb.ac.be:2013/235181 |
Date | 29 August 2016 |
Creators | Meyer, Julien |
Contributors | Fine, Joel, Gutt, Simone, Bertelson, Mélanie, Ross, Julius, Marinescu, George |
Publisher | Universite Libre de Bruxelles, Université libre de Bruxelles, Faculté des Sciences – Mathématiques, Bruxelles |
Source Sets | Université libre de Bruxelles |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis, info:ulb-repo/semantics/doctoralThesis, info:ulb-repo/semantics/openurl/vlink-dissertation |
Format | No full-text files |
Page generated in 0.0023 seconds