• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • Tagged with
  • 8
  • 8
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Weak solutions to a Monge-Ampère type equation on Kähler surfaces

Rao, Arvind Satya 01 May 2010 (has links)
In the context of moment maps and diffeomorphisms of Kähler manifolds, Donaldson introduced a fully nonlinear Monge-Ampère type equation. Among the conjectures he made about this equation is that the existence of solutions is equivalent to a positivity condition on the initial data. Weinkove later affirmed Donaldson's conjecture using a gradient flow for the equation in the space of Kähler potentials of the initial data. The topic of this thesis is the case when the initial data is merely semipositive and the domain is a closed Kähler surface. Regularity techniques for degenerate Monge-Ampère equations, specifically those coming from pluripotential theory, are used to prove the existence of a bounded, unique, weak solution. With the aid of a Nakai criterion, due to Lamari and Buchdahl, it is shown that this solution is smooth away from some curves of negative self-intersection.
2

Sur une classe de structures kählériennes généralisées toriques

Boulanger, Laurence 04 1900 (has links)
Cette thèse concerne le problème de trouver une notion naturelle de «courbure scalaire» en géométrie kählérienne généralisée. L'approche utilisée consiste à calculer l'application moment pour l'action du groupe des difféomorphismes hamiltoniens sur l'espace des structures kählériennes généralisées de type symplectique. En effet, il est bien connu que l'application moment pour la restriction de cette action aux structures kählériennes s'identifie à la courbure scalaire riemannienne. On se limite à une certaine classe de structure kählériennes généralisées sur les variétés toriques notée $DGK_{\omega}^{\mathbb{T}}(M)$ que l'on reconnaît comme étant classifiées par la donnée d'une matrice antisymétrique $C$ et d'une fonction réelle strictement convexe $\tau$ (ayant un comportement adéquat au voisinage de la frontière du polytope moment). Ce point de vue rend évident le fait que toute structure kählérienne torique peut être déformée en un élément non kählérien de $DGK_{\omega}^{\mathbb{T}}(M)$, et on note que cette déformation à lieu le long d'une des classes que R. Goto a démontré comme étant libre d'obstruction. On identifie des conditions suffisantes sur une paire $(\tau,C)$ pour qu'elle donne lieu à un élément de $DGK_{\omega}^{\mathbb{T}}(M)$ et on montre qu'en dimension 4, ces conditions sont également nécessaires. Suivant l'adage «l'application moment est la courbure» mentionné ci-haut, des formules pour des notions de «courbure scalaire hermitienne généralisée» et de «courbure scalaire riemannienne généralisée» (en dimension 4) sont obtenues en termes de la fonction $\tau$. Enfin, une expression de la courbure scalaire riemannienne généralisée en termes de la structure bihermitienne sous-jacente est dégagée en dimension 4. Lorsque comparée avec le résultat des physiciens Coimbra et al., notre formule suggère un choix canonique pour le dilaton de leur théorie. / This thesis is about the problem of finding a natural notion of "scalar curvature" in generalized Kähler geometry. The approach taken here is to compute the moment map for the action of the group of hamiltonian diffeomorphisms on the space of generalized Kähler structures of symplectic type. Indeed, it is well known that the moment map for the restriction of this action to the space of ordinary Kähler structures can be naturally identified with the riemannian scalar curvature. We concern ourselves only with a certain class of generalized Kähler structures on toric manifolds which we denote by $DGK_{\omega}^{\mathbb{T}}(M)$ and which we recognize as being classified by the data of an antisymetric matrix $C$ and a real-valued strictly convex functions $\tau$ (exhibiting appropriate behavior on a neighborhood of the boundary of the moment polytope). This viewpoint makes obvious the fact that any toric Kähler structure can be deformed to a non-Kähler element of $DGK_{\omega}^{\mathbb{T}}(M)$, and we note that this deformation happens along one of the classes which were shown by R. Goto to be unobstructed. We identify sufficient conditions on a pair $(\tau,C)$ for it to define an element of $DGK_{\omega}^{\mathbb{T}}(M)$ and we show that in dimension 4, these conditions are also necessary. Following the adage "the moment map is the curvature" mentioned above, formulas for notions of "generalized Hermitian scalar curvature" and "generalized Riemannian scalar curvature" (in dimension 4) are obtained in terms of the function $\tau$. Finally, an expression for the generalized Riemannian scalar curvature in terms of the underlying bi-Hermitian structure is found in dimension 4. When compared with the results of the physicists Coimbra et al., our formula suggests a canonical choice for the dilaton of their theory.
3

The Complex World of Superstrings : On Semichiral Sigma Models and N=(4,4) Supersymmetry / Supersträngars komplexa värld : Om semikirala sigmamodeller och N=(4,4) supersymmetri

Göteman, Malin January 2012 (has links)
Non-linear sigma models with extended supersymmetry have constrained target space geometries, and can serve as effective tools for investigating and constructing new geometries. Analyzing the geometrical and topological properties of sigma models is necessary to understand the underlying structures of string theory. The most general two-dimensional sigma model with manifest N=(2,2) supersymmetry can be parametrized by chiral, twisted chiral and semichiral superfields. In the research presented in this thesis, N=(4,4) (twisted) supersymmetry is constructed for a semichiral sigma model. It is found that the model can only have additional supersymmetry off-shell if the target space has a dimension larger than four. For four-dimensional target manifolds, supersymmetry can be introduced on-shell, leading to a hyperkähler manifold, or pseudo-supersymmetry can be imposed off-shell, implying a target space which is neutral hyperkähler. Different sigma models and corresponding geometries can be related to each other by T-duality, obtained by gauging isometries of the Lagrangian. The semichiral vector multiplet and the large vector multiplet are needed for gauging isometries mixing semichiral superfields, and chiral and twisted chiral superfields, respectively. We find transformations that close off-shell to a N=(4,4) supersymmetry on the field strengths and gauge potentials of the semichiral vector multiplet, and show that this is not possible for the large vector multiplet. A sigma model parametrized by chiral and twisted chiral superfields can be related to a semichiral sigma model by T-duality. The N=(4,4) supersymmetry transformations of the former model are linear and close off-shell, whereas those of the latter are non-linear and close only on-shell. We show that this discrepancy can be understood from T-duality, and find the origin of the non-linear terms in the transformations.
4

Positivité en géométrie kählérienne / Positivity in Kähler geometry

Xiao, Jian 23 May 2016 (has links)
L’objectif de cette thèse est d’étudier divers concepts de positivité en géométrie kählerienne. En particulier,pour une variété kählerienne compacte de dimension n, nous étudions la positivité des classes transcendantes de type (1,1) et (n-1, n-1) - ces classes comprennent donc en particulier les classesde diviseurs et les classes de courbes. / The goal of this thesis is to study various positivity concepts in Kähler geometry. In particular, for a compact Kähler manifold of dimension n, we study the positivity of transcendental (1,1) and (n-1, n-1) classes. These objects include the divisor classes and curve classes over smooth complex projective varieties.
5

Quantisation of the Laplacian and a Curved Version of Geometric Quantisation

Meyer, Julien 29 August 2016 (has links)
Let (E,h) be a holomorphic, Hermitian vector bundle over a polarized manifold. We provide a canonical quantisation of the Laplacian operator acting on sections of the bundle of Hermitian endomorphisms of E. If E is simple we obtain an approximation of the eigenvalues and eigenspaces of the Laplacian. In the case when the bundle E is the trivial line bundle, we quantise solutions to the heat equation on the manifold. Furthermore we show that geometric quantisation can be seen as the differential of a natural map between two Riemannian manifolds. Motivated by this fact we compute its next order approximation, namely its Hessian. / Option Mathématique du Doctorat en Sciences / info:eu-repo/semantics/nonPublished
6

Sur la géométrie des solitons de Kähler-Ricci dans les variétés toriques et horosphériques / On the geometry of Kähler-Ricci solitons on toric and horospherical manifold

Delgove, François 04 April 2019 (has links)
Cette thèse traite des solitons de Kähler-Ricci qui sont des généralisations naturelles des métriques de Kähler-Einstein. Elle est divisée en deux parties. La première étudie la décomposition solitonique de l’espace des champs de vecteurs holomorphes dans le cas des variétés toriques. La seconde partie étudie de manière analytique les variétés horosphériques en redémontrant par la méthode de la continuité l’existence de solitons de Kähler-Ricci sur ces variétés et en calculant après la borne supérieure de Ricci. / This thesis deal with Kähler-Ricci solitons which are natural generalizations of Kähler-Einstein metrics. It is divided into two parts. The first one studies the solitonic decomposition of the space of holomorphic vector spaces in the case of toric manifold. The second one studies is an analytic way the existence of horospherical Kähler-Ricci solitons on those manifolds and then computes the greatest Ricci lower bound.
7

Generalized Seiberg-Witten equations and hyperKähler geometry / Verallgemeinerte Seiberg-Witten Gleichungen und hyperKählersche Geometrie

Haydys, Andriy 09 February 2006 (has links)
No description available.
8

Kähler and almost-Kähler geometric flows / Flots géométriques kähleriens et presque-kähleriens

Pook, Julian 21 March 2014 (has links)
Les objects d'étude principaux de la thèse "Flots géométriques kähleriens et presque-kähleriens" sont des généralisations du flot de Calabi et du flot hermitienne de Yang--Mills. <p> Le flot de Calabi $partial_t omega = -i delbar del S(omega) =- i delbar del Lambda_omega <p> ho(omega) $ tente de déformer une forme initiale kählerienne vers une forme kählerienne $omega_c$ de courbure scalaire constante caractérisée par $S(omega_c) = Lambda_{omega_c} <p> ho(omega_c) = underline{S}$ dans la même classe de cohomologie. La généralisation étudiée est le flot de Calabi twisté qui remplace la forme de Kähler--Ricci $ho$ par $ho + alpha(t)$, où le emph{twist} $alpha(t)$ est une famille de $2$-formes qui converge vers $alpha_infty$. Le but de ce flot est de trouver des métriques kähleriennes $omega_{tc}$ de courbure scalaire twistées constantes caractérisées par $Lambda_{omega_{tc}} (ho(omega_{tc}) +alpha_infty) = underline{S} + underline{alpha}_infty$. L'existence et la convergence de ce flot sont établies sur des surfaces de Riemann à condition que le twist soit défini négatif et reste dans une classe de cohomologie fixe. <p>Si $E$ est un fibré véctoriel holomorphe sur une varieté kählerienne $(X,omega)$, une métrique de Hermite--Einstein $h_{he}$ est caractérisée par la condition $Lambda_omega i F_{he} = lambda id_E$. Le flot hermitien de Yang--Mills donné par $h^{-1}partial_t h =- [Lambda_omega iF_{h} - lambda id_E]$ tente de déformer une métrique hermitienne initiale vers une métrique Hermite--Einstein. La version classique du flot fixe la forme kählerienne $omega$. Le cas où $omega$ varie dans sa classe de cohomologie et converge vers $omega_infty$ est considéré dans la thèse. Il est démontré que le flot existe pour tout $t$ sur des surfaces de Riemann et converge vers une métrique Hermite--Einstein (par rapport à $omega_infty$) si le fibré $E$ est stable. <p> Les généralisations du flot de Calabi et du flot hermitien de Yang--Mills ne sont pas arbitraires, mais apparaissent naturellement comme une approximation du flot de Calabi sur des fibrés adiabatiques. Si $Z,X$ sont des variétés complexes compactes, $pi colon Z \ / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.0414 seconds