Return to search

Analysis of Transactional Data with Long Short-Term Memory Recurrent Neural Networks

An issue authorities and banks face is fraud related to payments and transactions where huge monetary losses occur to a party or where money laundering schemes are carried out. Previous work in the field of machine learning for fraud detection has addressed the issue as a supervised learning problem. In this thesis, we propose a model which can be used in a fraud detection system with transactions and payments that are unlabeled. The proposed modelis a Long Short-term Memory in an auto-encoder decoder network (LSTMAED)which is trained and tested on transformed data. The data is transformed by reducing it to Principal Components and clustering it with K-means. The model is trained to reconstruct the sequence with high accuracy. Our results indicate that the LSTM-AED performs better than a random sequence generating process in learning and reconstructing a sequence of payments. We also found that huge a loss of information occurs in the pre-processing stages. / Obehöriga transaktioner och bedrägerier i betalningar kan leda till stora ekonomiska förluster för banker och myndigheter. Inom maskininlärning har detta problem tidigare hanterats med hjälp av klassifierare via supervised learning. I detta examensarbete föreslår vi en modell som kan användas i ett system för att upptäcka bedrägerier. Modellen appliceras på omärkt data med många olika variabler. Modellen som används är en Long Short-term memory i en auto-encoder decoder nätverk. Datan transformeras med PCA och klustras med K-means. Modellen tränas till att rekonstruera en sekvens av betalningar med hög noggrannhet. Vår resultat visar att LSTM-AED presterar bättre än en modell som endast gissar nästa punkt i sekvensen. Resultatet visar också att mycket information i datan går förlorad när den förbehandlas och transformeras.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-281282
Date January 2020
CreatorsNawaz, Sabeen
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2020:599

Page generated in 0.002 seconds