Return to search

Survival analysis issues with interval-censored data

L'anàlisi de la supervivència s'utilitza en diversos àmbits per tal d'analitzar dades que mesuren el temps transcorregut entre dos successos. També s'anomena anàlisi de la història dels esdeveniments, anàlisi de temps de vida, anàlisi de fiabilitat o anàlisi del temps fins a l'esdeveniment. Una de les dificultats que té aquesta àrea de l'estadística és la presència de dades censurades. El temps de vida d'un individu és censurat quan només és possible mesurar-lo de manera parcial o inexacta. Hi ha diverses circumstàncies que donen lloc a diversos tipus de censura. La censura en un interval fa referència a una situació on el succés d'interès no es pot observar directament i només tenim coneixement que ha tingut lloc en un interval de temps aleatori. Aquest tipus de censura ha generat molta recerca en els darrers anys i usualment té lloc en estudis on els individus són inspeccionats o observats de manera intermitent. En aquesta situació només tenim coneixement que el temps de vida de l'individu es troba entre dos temps d'inspecció consecutius.Aquesta tesi doctoral es divideix en dues parts que tracten dues qüestions importants que fan referència a dades amb censura en un interval. La primera part la formen els capítols 2 i 3 els quals tracten sobre condicions formals que asseguren que la versemblança simplificada pot ser utilitzada en l'estimació de la distribució del temps de vida. La segona part la formen els capítols 4 i 5 que es dediquen a l'estudi de procediments estadístics pel problema de k mostres. El treball que reproduïm conté diversos materials que ja s'han publicat o ja s'han presentat per ser considerats com objecte de publicació.En el capítol 1 introduïm la notació bàsica que s'utilitza en la tesi doctoral. També fem una descripció de l'enfocament no paramètric en l'estimació de la funció de distribució del temps de vida. Peto (1973) i Turnbull (1976) van ser els primers autors que van proposar un mètode d'estimació basat en la versió simplificada de la funció de versemblança. Altres autors han estudiat la unicitat de la solució obtinguda en aquest mètode (Gentleman i Geyer, 1994) o han millorat el mètode amb noves propostes (Wellner i Zhan, 1997).El capítol 2 reprodueix l'article d'Oller et al. (2004). Demostrem l'equivalència entre les diferents caracteritzacions de censura no informativa que podem trobar a la bibliografia i definim una condició de suma constant anàloga a l'obtinguda en el context de censura per la dreta. També demostrem que si la condició de no informació o la condició de suma constant són certes, la versemblança simplificada es pot utilitzar per obtenir l'estimador de màxima versemblança no paramètric (NPMLE) de la funció de distribució del temps de vida. Finalment, caracteritzem la propietat de suma constant d'acord amb diversos tipus de censura. En el capítol 3 estudiem quina relació té la propietat de suma constant en la identificació de la distribució del temps de vida. Demostrem que la distribució del temps de vida no és identificable fora de la classe dels models de suma constant. També demostrem que la probabilitat del temps de vida en cadascun dels intervals observables és identificable dins la classe dels models de suma constant. Tots aquests conceptes elsil·lustrem amb diversos exemples.El capítol 4 s'ha publicat parcialment en l'article de revisió metodològica de Gómez et al. (2004). Proporciona una visió general d'aquelles tècniques que s'han aplicat en el problema no paramètric de comparació de dues o més mostres amb dades censurades en un interval. També hem desenvolupat algunes rutines amb S-Plus que implementen la versió permutacional del tests de Wilcoxon, Logrank i de la t de Student per a dades censurades en un interval (Fay and Shih, 1998). Aquesta part de la tesi doctoral es complementa en el capítol 5 amb diverses propostes d'extensió del test de Jonckeere. Amb l'objectiu de provar una tendència en el problema de k mostres, Abel (1986) va realitzar una de les poques generalitzacions del test de Jonckheere per a dades censurades en un interval. Nosaltres proposem altres generalitzacions d'acord amb els resultats presentats en el capítol 4. Utilitzem enfocaments permutacionals i de Monte Carlo. Proporcionem programes informàtics per a cada proposta i realitzem un estudi de simulació per tal de comparar la potència de cada proposta sota diferents models paramètrics i supòsits de tendència. Com a motivació de la metodologia, en els dos capítols s'analitza un conjunt de dades d'un estudi sobre els beneficis de la zidovudina en pacients en els primers estadis de la infecció del virus VIH (Volberding et al., 1995).Finalment, el capítol 6 resumeix els resultats i destaca aquells aspectes que s'han de completar en el futur. / Survival analysis is used in various fields for analyzing data involving the duration between two events. It is also known as event history analysis, lifetime data analysis, reliability analysis or time to event analysis. One of the difficulties which arise in this area is the presence of censored data. The lifetime of an individual is censored when it cannot be exactly measured but partial information is available. Different circumstances can produce different types of censoring. Interval censoring refers to the situation when the event of interest cannot be directly observed and it is only known to have occurred during a random interval of time. This kind of censoring has produced a lot of work in the last years and typically occurs for individuals in a study being inspected or observed intermittently, so that an individual's lifetime is known only to lie between two successive observation times.This PhD thesis is divided into two parts which handle two important issues of interval censored data. The first part is composed by Chapter 2 and Chapter 3 and it is about formal conditions which allow estimation of the lifetime distribution to be based on a well known simplified likelihood. The second part is composed by Chapter 4 and Chapter 5 and it is devoted to the study of test procedures for the k-sample problem. The present work reproduces several material which has already been published or has been already submitted.In Chapter 1 we give the basic notation used in this PhD thesis. We also describe the nonparametric approach to estimate the distribution function of the lifetime variable. Peto (1973) and Turnbull (1976) were the first authors to propose an estimation method which is based on a simplified version of the likelihood function. Other authors have studied the uniqueness of the solution given by this method (Gentleman and Geyer, 1994) or have improved it with new proposals (Wellner and Zhan, 1997).Chapter 2 reproduces the paper of Oller et al. (2004). We prove the equivalence between different characterizations of noninformative censoring appeared in the literature and we define an analogous constant-sum condition to the one derived in the context of right censoring. We prove as well that when the noninformative condition or the constant-sum condition holds, the simplified likelihood can be used to obtain the nonparametric maximum likelihood estimator (NPMLE) of the failure time distribution function. Finally, we characterize the constant-sum property according to different types of censoring. In Chapter 3 we study the relevance of the constant-sum property in the identifiability of the lifetime distribution. We show that the lifetime distribution is not identifiable outside the class of constant-sum models. We also show that the lifetime probabilities assigned to the observable intervals are identifiable inside the class of constant-sum models. We illustrate all these notions with several examples.Chapter 4 has partially been published in the survey paper of Gómez et al. (2004). It gives a general view of those procedures which have been applied in the nonparametric problem of the comparison of two or more interval-censored samples. We also develop some S-Plus routines which implement the permutational version of the Wilcoxon test, the Logrank test and the t-test for interval censored data (Fay and Shih, 1998). This part of the PhD thesis is completed in Chapter 5 by different proposals of extension of the Jonckeere's test. In order to test for an increasing trend in the k-sample problem, Abel (1986) gives one of the few generalizations of the Jonckheree's test for interval-censored data. We also suggest different Jonckheere-type tests according to the tests presented in Chapter 4. We use permutational and Monte Carlo approaches. We give computer programs for each proposal and perform a simulation study in order compare the power of each proposal under different parametric assumptions and different alternatives. We motivate both chapters with the analysis of a set of data from a study of the benefits of zidovudine in patients in the early stages of the HIV infection (Volberding et al., 1995).Finally, Chapter 6 summarizes results and address those aspects which remain to be completed.

Identiferoai:union.ndltd.org:TDX_UPC/oai:www.tdx.cat:10803/6520
Date30 June 2006
CreatorsOller Piqué, Ramon
ContributorsGómez Melis, Guadalupe, Universitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa
PublisherUniversitat Politècnica de Catalunya
Source SetsUniversitat Politècnica de Catalunya
LanguageEnglish
Detected LanguageSpanish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion
Formatapplication/pdf
SourceTDX (Tesis Doctorals en Xarxa)
Rightsinfo:eu-repo/semantics/openAccess, ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

Page generated in 0.0032 seconds