Return to search

An investigation of categorical variable encoding techniques in machine learning: binary versus one-hot and feature hashing / En undersökning av kodningstekniker för diskreta variabler inom maskininlärning: binär mot one-hot och feature hashing

Machine learning methods can be used for solving important binary classification tasks in domains such as display advertising and recommender systems. In many of these domains categorical features are common and often of high cardinality. Using one-hot encoding in such circumstances lead to very high dimensional vector representations, causing memory and computability concerns for machine learning models. This thesis investigated the viability of a binary encoding scheme in which categorical values were mapped to integers that were then encoded in a binary format. This binary scheme allowed for representing categorical features using log2(d)-dimensional vectors, where d is the dimension associated with a one-hot encoding. To evaluate the performance of the binary encoding, it was compared against one-hot and feature hashed representations with the use of linear logistic regression and neural networks based models. These models were trained and evaluated using data from two publicly available datasets: Criteo and Census. The results showed that a one-hot encoding with a linear logistic regression model gave the best performance according to the PR-AUC metric. This was, however, at the expense of using 118 and 65,953 dimensional vector representations for Census and Criteo respectively. A binary encoding led to a lower performance but used only 35 and 316 dimensions respectively. For Criteo, binary encoding suffered significantly in performance and feature hashing was perceived as a more viable alternative. It was also found that employing a neural network helped mitigate any loss in performance associated with using binary and feature hashed representations. / Maskininlärningsmetoder kan användas för att lösa viktiga binära klassificeringsuppgifter i domäner som displayannonsering och rekommendationssystem. I många av dessa domäner är kategoriska variabler vanliga och ofta av hög kardinalitet. Användning av one-hot-kodning under sådana omständigheter leder till väldigt högdimensionella vektorrepresentationer. Detta orsakar minnesoch beräkningsproblem för maskininlärningsmodeller. Denna uppsats undersökte användbarheten för ett binärt kodningsschema där kategoriska värden var avbildade på heltalvärden som sedan kodades i ett binärt format. Detta binära system tillät att representera kategoriska värden med hjälp av log2(d) -dimensionella vektorer, där d är dimensionen förknippad med en one-hot kodning. För att utvärdera prestandan för den binära kodningen jämfördes den mot one-hot och en hashbaserad kodning. En linjär logistikregression och ett neuralt nätverk tränades med hjälp av data från två offentligt tillgängliga dataset: Criteo och Census, och den slutliga prestandan jämfördes. Resultaten visade att en one-hot kodning med en linjär logistisk regressionsmodell gav den bästa prestandan enligt PR-AUC måttet. Denna metod använde dock 118 och 65,953 dimensionella vektorrepresentationer för Census respektive Criteo. En binär kodning ledde till en lägre prestanda generellt, men använde endast 35 respektive 316 dimensioner. Den binära kodningen presterade väsentligt sämre specifikt för Criteo datan, istället var hashbaserade kodningen en mer attraktiv lösning. Försämringen i prestationen associerad med binär och hashbaserad kodning kunde mildras av att använda ett neuralt nätverk.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-237426
Date January 2018
CreatorsSeger, Cedric
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2018:596

Page generated in 0.0023 seconds