Return to search

Estimation non paramétrique de densités conditionnelles : grande dimension, parcimonie et algorithmes gloutons. / Nonparametric estimation of sparse conditional densities in moderately large dimensions by greedy algorithms.

Nous considérons le problème d’estimation de densités conditionnelles en modérément grandes dimensions. Beaucoup plus informatives que les fonctions de régression, les densités condi- tionnelles sont d’un intérêt majeur dans les méthodes récentes, notamment dans le cadre bayésien (étude de la distribution postérieure, recherche de ses modes...). Après avoir rappelé les problèmes liés à l’estimation en grande dimension dans l’introduction, les deux chapitres suivants développent deux méthodes qui s’attaquent au fléau de la dimension en demandant : d’être efficace computation- nellement grâce à une procédure itérative gloutonne, de détecter les variables pertinentes sous une hypothèse de parcimonie, et converger à vitesse minimax quasi-optimale. Plus précisément, les deux méthodes considèrent des estimateurs à noyau bien adaptés à l’estimation de densités conditionnelles et sélectionnent une fenêtre multivariée ponctuelle en revisitant l’algorithme glouton RODEO (Re- gularisation Of Derivative Expectation Operator). La première méthode ayant des problèmes d’ini- tialisation et des facteurs logarithmiques supplémentaires dans la vitesse de convergence, la seconde méthode résout ces problèmes, tout en ajoutant l’adaptation à la régularité. Dans l’avant-dernier cha- pitre, on traite de la calibration et des performances numériques de ces deux procédures, avant de donner quelques commentaires et perspectives dans le dernier chapitre. / We consider the problem of conditional density estimation in moderately large dimen- sions. Much more informative than regression functions, conditional densities are of main interest in recent methods, particularly in the Bayesian framework (studying the posterior distribution, find- ing its modes...). After recalling the estimation issues in high dimension in the introduction, the two following chapters develop on two methods which address the issues of the curse of dimensionality: being computationally efficient by a greedy iterative procedure, detecting under some suitably defined sparsity conditions the relevant variables, while converging at a quasi-optimal minimax rate. More precisely, the two methods consider kernel estimators well-adapted for conditional density estimation and select a pointwise multivariate bandwidth by revisiting the greedy algorithm RODEO (Regular- isation Of Derivative Expectation Operator). The first method having some initialization problems and extra logarithmic factors in its convergence rate, the second method solves these problems, while adding adaptation to the smoothness. In the penultimate chapter, we discuss the calibration and nu- merical performance of these two procedures, before giving some comments and perspectives in the last chapter.

Identiferoai:union.ndltd.org:theses.fr/2019SACLS185
Date08 July 2019
CreatorsNguyen, Minh-Lien Jeanne
ContributorsParis Saclay, Rivoirard, Vincent, Lacour, Claire
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench, English
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0027 seconds