Return to search

Design and synthesis of constrained azacyclic pyrrolidine analogues of FTY720 as anticancer agents & metal coordination-controlled and bifunctional catalysis toward tertiary β-Ketols

Cette thèse se compose en deux parties:

Première Partie: La conception et la synthèse d’analogues pyrrolidiniques, utilisés comme agents anticancéreux, dérivés du FTY720.

FTY720 est actuellement commercialisé comme médicament (GilenyaTM) pour le traitement de la sclérose en plaques rémittente-récurrente. Il agit comme immunosuppresseur en raison de son effet sur les récepteurs de la sphingosine-1-phosphate. A fortes doses, FTY720 présente un effet antinéoplasique. Cependant, à de telles doses, un des effets secondaires observé est la bradycardie dû à l’activation des récepteurs S1P1 et S1P3. Ceci limite son potentiel d’utilisation lors de chimiothérapie.

Nos précédentes études ont montré que des analogues pyrrolidiniques dérivés du FTY720 présentaient une activité anticancéreuse mais aucune sur les récepteurs S1P1 et S1P3. Nous avons soumis l’idée qu’une étude relation structure-activité (SARs) pourrait nous conduire à la découverte de nouveaux agents anti tumoraux. Ainsi, deux séries de composés pyrrolidiniques (O-arylmethyl substitué et C-arylmethyl substitué) ont pu être envisagés et synthétisés (Chapitre 1). Ces analogues ont montré d’excellentes activités cytotoxiques contre diverses cellules cancéreuses humaines (prostate, colon, sein, pancréas et leucémie), plus particulièrement les analogues actifs qui ne peuvent pas être phosphorylés par SphK, présentent un plus grand potentiel pour le traitement du cancer sans effet secondaire comme la bradycardie.

Les études mécanistiques suggèrent que ces analogues de déclencheurs de régulation négative sur les transporteurs de nutriments induisent une crise bioénergétique en affamant les cellules cancéreuses. Afin d’approfondir nos connaissances sur les récepteurs cibles, nous avons conçu et synthétisé des sondes diazirine basées sur le marquage d’affinité aux photons (méthode PAL: Photo-Affinity Labeling) (Chapitre 2). En s’appuyant sur la méthode PAL, il est possible de récolter des informations sur les récepteurs cibles à travers l’analyse LC/MS/MS de la protéine. Ces tests sont en cours et les résultats sont prometteurs.

Deuxième partie: Coordination métallique et catalyse di fonctionnelle de dérivés β-hydroxy cétones tertiaires.

Les réactions de Barbier et de Grignard sont des méthodes classiques pour former des liaisons carbone-carbone, et généralement utilisées pour la préparation d’alcools secondaires et tertiaires. En vue d’améliorer la réaction de Grignard avec le 1-iodobutane dans les conditions « one-pot » de Barbier, nous avons obtenu comme produit majoritaire la β-hydroxy cétone provenant de l’auto aldolisation de la 5-hexen-2-one, plutôt que le produit attendu d’addition de l’alcool (Chapitre 3). La formation inattendue de la β-hydroxy cétone a également été observée en utilisant d’autres dérivés méthyl cétone. Étonnement dans la réaction intramoléculaire d’une tricétone, connue pour former la cétone Hajos-Parrish, le produit majoritaire est rarement la β-hydroxy cétone présentant la fonction alcool en position axiale. Intrigué par ces résultats et après l’étude systématique des conditions de réaction, nous avons développé deux nouvelles méthodes à travers la synthèse sélective et catalytique de β-hydroxy cétones spécifiques par cyclisation intramoléculaire avec des rendements élevés (Chapitre 4). La réaction peut être catalysée soit par une base adaptée et du bromure de lithium comme additif en passant par un état de transition coordonné au lithium, ou bien soit à l’aide d’un catalyseur TBD di fonctionnel, via un état de transition médiée par une coordination bidenté au TBD. Les mécanismes proposés ont été corroborés par calcul DFT. Ces réactions catalytiques ont également été appliquées à d’autres substrats comme les tricétones et les dicétones. Bien que les efforts préliminaires afin d’obtenir une enantioselectivité se sont révélés sans succès, la synthèse et la recherche de nouveaux catalyseurs chiraux sont en cours. / This thesis consists of two parts:

Part 1: Design and synthesis of constrained azacyclic pyrrolidine analogues of FTY720 as anticancer agents

FTY720 is presently marketed as a drug (GilenyaTM) for the treatment of relapsing-remitting multiple sclerosis. It functions as an immunosuppressant due to its effect on sphingosine-1-phosphate (S1P) receptors. At higher doses, FTY720 also has antineoplastic actions. However, at such doses it induces bradycardia due to the activation of the S1P1 and S1P3 receptors. This limits its potentical to be used as a cancer therapy in humans.

Our previous studies have shown that some constrained pyrrolidine analogues of FTY720 have anticancer activity but no activity toward S1P1 and S1P3 receptors. We reasoned that a study of the structure-activity relationships (SARs) could lead to the discovery of new effective antitumor agents. Thus, two series of constrained analogues (O-arylmethyl-substituted pyrrolidines and C-aryl-substituted pyrrolidines) were designed and synthesized (Chapter 1). These analogues showed excellent cytotoxic activity against various human cancer cells (prostate, colon, breast, pancreas and leukemia). Especially, several active analogues, which cannot be phosphorylated by SphK, have the potency to be further studied in the treatment of cancer without inducing bradycardia.

Mechanistic studies suggest that these constrained analogues trigger down-regulation of nutrient transporters, which induce a bioenergetic crisis and the cancer cells starve to death. To further investigate their target receptors, we have designed and synthesized diazirine based photo-affinity labeling (PAL) probes (Chapter 2). Aided by the PAL technique, information regarding the target receptor could be obtained through LC/MS/MS protein analysis. These tests are in progress and the preliminary results appear promising.

Part 2: Metal coordination-controlled and bifunctional catalysis toward tertiary β-ketols

The Barbier and Grignard reactions are classical methods to form carbon-carbon bonds, and generally used to prepare secondary or tertiary alcohols. In an attempt to perform a Grignard reaction with n-butyl iodide under Barbier one-pot conditions, we obtained major product β-hydroxyl ketol from the self-aldol reaction of 5-hexen-2-one, rather than the expected addition alcohol product (Chapter 3). The unusual β-ketol formation was also observed using other methyl ketone substrates. Interestingly, in an intramolecular reaction of a triketone substrate, which is well known to give the Hajos-Parrish ketone, the favored product was a rarely studied β-ketol with the hydroxyl group at axial position. Intrigued by these results, after systematic reaction condition studies, we developed two new methods toward the catalytic synthesis of specific β-ketols by intramolecular cylcization in high yield and selectivity (Chapter 4). The reaction can be catalyzed either by a suitable base and lithium bromide as the additive, through a lithium pre-organized transition state or by a bifunctional catalyst TBD (triazabicyclodecene), through a TBD mediated bidentate transition state. The proposed mechanisms were corroborated by DFT computation. These catalytic reactions were also extended to other triketone and diketone substrates. Although the initial efforts to achieve enantioselectivity were not successful, they merit further study of the synthesis and investigation of new chiral catalysts.

Identiferoai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/13959
Date08 1900
CreatorsChen, Bin
ContributorsHanessian, Stephen
Source SetsUniversité de Montréal
LanguageEnglish
Detected LanguageFrench
TypeThèse ou Mémoire numérique / Electronic Thesis or Dissertation

Page generated in 0.0029 seconds