La division cellulaire est influencée par les différents stimuli provenant de l’extérieur ou de l’intérieur de la cellule. Plusieurs réseaux enzymatiques élaborés au cours de l’évolution relayent l’information générée par ces signaux. Les modules MAP kinases sont extrêmement importants au sein de la cellule. Chez l’humain, 14 MAP kinases sont regroupées en sept voies distinctes intervenant dans le contrôle d’une myriade de processus cellulaires. ERK3/4 sont des homologues de ERK1/2 pour lesquelles on ne connaît que très peu de choses concernant leurs fonctions et régulation. Ces MAP kinases sont dites atypiques puisqu’elles ont des particularités structurales et des modes de régulation qui diffèrent des autres MAP kinases classiques. Ainsi, notre laboratoire a démontré que l’activité de ERK3 est régulée par le système ubiquitine-protéasome et qu’elle pourrait avoir un rôle à jouer dans le contrôle de la différenciation et la prolifération cellulaire.
La première étude présentée décrit la régulation de ERK3 au cours du cycle cellulaire. Nous avons observé que ERK3 est hyperphosphorylée et s’accumule spécifiquement au cours de la mitose. Des analyses de spectrométrie de masse ont mené à l’identification de quatre sites de phosphorylation situés à l’extrémité du domaine C-terminal. Nous avons pu démontrer que la kinase mitotique CDK1/cycline B phosphoryle ces sites et que les phosphatases CDC14A et CDC14B les déphosphorylent. Finalement, nous démontrons que la phosphorylation mitotique de ERK3 a pour effet de la stabiliser.
Au début de mes études doctorales, la kinase MK5 fut identifiée comme premier partenaire et substrat de ERK3. MK5 a très peu de fonctions connues. Des données dans la littérature suggèrent qu’elle peut moduler le cycle cellulaire dans certaines conditions. Par exemple, MK5 a récemment été identifié comme inducteur de la sénescence induite par l’oncogène Ras. Dans la deuxième étude, nous décrivons une nouvelle fonction de MK5 dans le contrôle du cycle cellulaire. Nous démontrons par des expériences de gain et perte de fonction que MK5 ralentit l’entrée en mitose suite à un arrêt de la réplication. Cette fonction est dépendante de l’activité enzymatique de MK5 qui régule indirectement l’activité de CDK1/cycline B. Finalement, nous avons identifié Cdc25A comme un nouveau substrat in vitro de MK5 dont la surexpression supprime l’effet de MK5 sur l’entrée en mitose.
En conclusion, nos résultats décrivent un nouveau mécanisme de régulation de ERK3 au cours de la mitose, ainsi qu’une nouvelle fonction pour MK5 dans le contrôle de l’entrée en mitose en réponse à des stress de la réplication. Ces résultats démontrent pour la première fois l’implication de ces protéines au cours de la transition G2/M. Nos travaux établissent de nouvelles pistes d’études pour mieux comprendre les rôles encore peu définis des kinases ERK3/4-MK5. / The process of cell division is largely influenced by extracellular and intracellular cues. Many enzymatic pathways refined during evolution propagate the information generated by those cues. MAP kinase modules are extremely important within the cells. Human genome encodes 14 MAP kinases genes grouped into seven distinct pathways involved in the control of many cellular processes. ERK3/4 are kinases homologous to ERK1/2. Very little is known about their regulation and molecular functions. These MAP kinases are described as being atypical based on their unique structural characteristics and mode of regulation. Our laboratory was the first to demonstrate that the activity of ERK3 is mainly regulated by the ubiquitin-proteasome system in proliferating cells. In addition, several lines of evidence suggest a role for ERK3 in the control of cell differentiation and proliferation.
The first study presented herein documents the regulation of ERK3 during the cell cycle. We observed that ERK3 is hyperphosphorylated and accumulated specifically during mitosis. Mass spectrometry analyses led to the identification of four phosphorylation sites located in the C-terminal domain. We demonstrate that mitotic kinase CDK1/cyclin B phosphorylates these sites which are dephosphorylated by Cdc14A and Cdc14B phosphatases. Finally, we show that mitotic phosphorylation of ERK3 controls its stability.
At the beginning of my Ph.D. training, the kinase MK5 was the first identified binding partner and substrate of ERK3. MK5 is implicated in very few cellular functions. Data suggest that under certain conditions it modulates cell cycle progression. For example, MK5 was recently identified as a tumor suppressor gene essential for ras-induced senescence. In the second study of this thesis, we describe a novel function of MK5 in cell cycle progression. Gain and loss of function experiments demonstrate that MK5 delays G2/M transition following replicative stress. This function depends on its catalytic activity to indirectly regulates CDK1/cyclin B. Finally, we identified Cdc25A as a good in vitro substrate for MK5. Interestingly, Cdc25A expression inhibits MK5-induced delay of entry into mitosis.
In conclusion, our results described a novel mechanism of regulation of ERK3 during mitosis and a novel function of MK5 in the control of G2/M transition after replicative stress. These data demonstrate for the first time the relation between these kinases and the G2/M transition. Our work should contribute to a better understanding of the roles of ERK3/4-MK5 kinases.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/5073 |
Date | 12 1900 |
Creators | Tanguay, Pierre-Luc |
Contributors | Meloche, Sylvain |
Source Sets | Université de Montréal |
Language | French |
Detected Language | French |
Type | Thèse ou Mémoire numérique / Electronic Thesis or Dissertation |
Page generated in 0.0041 seconds