abstract: The Semantic Web contains large amounts of related information in the form of knowledge graphs such as DBpedia. These knowledge graphs are typically enormous and are not easily accessible for users as they need specialized knowledge in query languages (such as SPARQL) as well as deep familiarity of the ontologies used by these knowledge graphs. So, to make these knowledge graphs more accessible (even for non- experts) several question answering (QA) systems have been developed over the last decade. Due to the complexity of the task, several approaches have been undertaken that include techniques from natural language processing (NLP), information retrieval (IR), machine learning (ML) and the Semantic Web (SW). At a higher level, most question answering systems approach the question answering task as a conversion from the natural language question to its corresponding SPARQL query. These systems then utilize the query to retrieve the desired entities or literals. One approach to solve this problem, that is used by most systems today, is to apply deep syntactic and semantic analysis on the input question to derive the SPARQL query. This has resulted in the evolution of natural language processing pipelines that have common characteristics such as answer type detection, segmentation, phrase matching, part-of-speech-tagging, named entity recognition, named entity disambiguation, syntactic or dependency parsing, semantic role labeling, etc.
This has lead to NLP pipeline architectures that integrate components that solve a specific aspect of the problem and pass on the results to subsequent components for further processing eg: DBpedia Spotlight for named entity recognition, RelMatch for relational mapping, etc. A major drawback in this approach is error propagation that is a common problem in NLP. This can occur due to mistakes early on in the pipeline that can adversely affect successive steps further down the pipeline. Another approach is to use query templates either manually generated or extracted from existing benchmark datasets such as Question Answering over Linked Data (QALD) to generate the SPARQL queries that is basically a set of predefined queries with various slots that need to be filled. This approach potentially shifts the question answering problem into a classification task where the system needs to match the input question to the appropriate template (class label).
This thesis proposes a neural network approach to automatically learn and classify natural language questions into its corresponding template using recursive neural networks. An obvious advantage of using neural networks is the elimination for the need of laborious feature engineering that can be cumbersome and error prone. The input question would be encoded into a vector representation. The model will be trained and evaluated on the LC-QuAD Dataset (Large-scale Complex Question Answering Dataset). The dataset was created explicitly for machine learning based QA approaches for learning complex SPARQL queries. The dataset consists of 5000 questions along with their corresponding SPARQL queries over the DBpedia dataset spanning 5042 entities and 615 predicates. These queries were annotated based on 38 unique templates that the model will attempt to classify. The resulting model will be evaluated against both the LC-QuAD dataset and the Question Answering Over Linked Data (QALD-7) dataset.
The recursive neural network achieves template classification accuracy of 0.828 on the LC-QuAD dataset and an accuracy of 0.618 on the QALD-7 dataset. When the top-2 most likely templates were considered the model achieves an accuracy of 0.945 on the LC-QuAD dataset and 0.786 on the QALD-7 dataset.
After slot filling, the overall system achieves a macro F-score 0.419 on the LC- QuAD dataset and a macro F-score of 0.417 on the QALD-7 dataset. / Dissertation/Thesis / Masters Thesis Software Engineering 2018
Identifer | oai:union.ndltd.org:asu.edu/item:51654 |
Date | January 2018 |
Contributors | Athreya, Ram G (Author), Bansal, Srividya (Advisor), Usbeck, Ricardo (Committee member), Gary, Kevin (Committee member), Arizona State University (Publisher) |
Source Sets | Arizona State University |
Language | English |
Detected Language | English |
Type | Masters Thesis |
Format | 76 pages |
Rights | http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0021 seconds