Return to search

Development of a modern catalytic system for the production of C3+ aliphatic alcohols by the Fischer-Tropsch method

This thesis deals with converting a mixture of H2 and CO, also referred to as syngas or producer gas, to higher or mixed alcohols and other fuels through a process called Fischer Tropsch Synthesis (FTS). It is a beneficial pathway that minimizes the dependence on oil and similar fossil fuels which contribute to rapid climate change by releasing harmful greenhouse gases. The syngas used in FTS, is generally obtained through gasification of biomass to make the entire process renewable and to make the resulting fuel carbon neutral. The products are pure due to prior cleaning of syngas mixture to remove oxides of nitrogen, sulphur and other particulate matter, before the process, thereby drastically reducing the net exhaust gas emissions. The major objective of this project is to design a novel catalyst system and subject it to a series of experimentation for testing its selectivity towards alcohols. This is because the present catalytic systems are either very expensive to assemble or confer to a low yield. Two cobalt (Co) based catalysts, one without a promoter and the other which is promoted by zirconium (Zr), are prepared. The activity and selectivity of Co catalysts are finally compared with the existing Swedish Biofuels AB’s Iron (Fe) based catalyst promoted by copper (Cu) and chromium (Cr) along with characterization of the optimum reaction parameters like temperature, pressure, GHSV and syngas ratio for FTS. Aqueous incipient impregnation approach was adopted wherein the Co active metal and Zr promoter (only in second catalyst) are introduced step-wise on a ϒ-alumina support to synthesize the catalyst after which it is heat treated through drying, calcination and reduction to obtain the active Co metal catalyst. A high temperature FTS, was employed for the yield of alcohols and other gasoline derivatives according to literature. Finally, the liquid and gaseous products are analyzed through GC or GC/MS analysis techniques. The unpromoted Co catalyst’s activity is regarded as a failure due to satisfactory results. There were a few problems associated with the catalyst alone like poor mechanical stability that could be attributed to the use of an incorrect binder. Other problems included methanation due to haphazard temperature variations and inefficient catalyst reduction. For the promoted Co catalyst, the yield of alcohols and hydrocarbons was significantly higher than the unpromoted Co catalyst. A temperature of 300 °C, a GHSV of 360 h-1 , a pressure of 10 bar and a H2:CO ratio of 1.3:1 were the optimal background conditions for FTS. Higher temperature caused methanation and reduced the chain growth probability factor, α, that resulted in the formation of lower hydrocarbons only. Any increase in gas ratio and GHSV, also increased the rate of methane formation and caused diffusion limitations. For a one-stage setup with the reversal of exhaust gases, the conversion rates of CO and H2 were quite promising. This success can be attributed to a higher calcination temperature that increased the degree of reduction of Co due to formation of promoter oxides thereby enabling CO hydrogenation and H2 insertion. It helped to reduce CO2 formation as well. Even for the Fe catalyst, a low temperature, a low GHSV and low syngas ratio were preferred. But unlike its Co counterpart, a higher pressure favored an increase in yield of alcohols and other long chain hydrocarbons. Fe’s ability to support WGS reaction disturbed the molar ratio of CO and also released more CO2 that could affect the rate of syngas conversion. But, on the whole, Fe catalyst was efficient than Co catalyst for alcohol synthesis. The overall yield of alcohols was just 5% of the liquid products. Nearly 86% of the alcohol fraction comprised of C1, C2 and C3 alcohols alone and very few C4, C5 and C6 alcohols were obtained. / Denna avhandling behandlar omvandling av en blandning av H2 och CO, även kallad syngas eller producentgas, till högre eller blandade alkoholer och andra bränslen genom en process som kallas Fischer Tropsch Synthesis (FTS). Det är en bra väg som minimerar beroendet av olja och liknande fossila bränslen som bidrar till snabba klimatförändringar genom att släppa ut skadliga växthusgaser. Syngasen som används i FTS erhålls generellt genom förgasning av biomassa för att göra hela processen förnybar och för att göra det resulterande bränslet kolneutralt. Produkterna är rena på grund av föregående rengöring av syngasblandningen för att avlägsna kväveoxider, svavel och annat partikelformigt material före processen och därigenom drastiskt minska utsläppen av avgaserna. Huvudsyftet med detta projekt är att utforma ett nytt katalysatorsystem och utsätta det för en serie experiment för att testa dess selektivitet gentemot alkoholer. Detta beror på att de nuvarande katalytiska systemen antingen är mycket dyra att montera eller ge ett lågt utbyte. Två koboltbaserade (Co) -baserade katalysatorer, en utan en promotor och den andra som befordras av zirkonium (Zr), framställs. Aktiviteten och selektiviteten hos Co-katalysatorer jämförs slutligen med de befintliga Swedish Biofuels AB: s Iron (Fe) -baserade katalysator som främjas av koppar (Cu) och krom (Cr) tillsammans med karaktärisering av de optimala reaktionsparametrarna som temperatur, tryck, GHSV och syngasförhållande för FTS. Vattenhaltig begynnande impregneringsmetod användes där den Co-aktiva metallen och Zr-promotorn (endast i den andra katalysatorn) införs stegvis på ett ϒ-aluminiumoxidstöd för att syntetisera katalysatorn, varefter den värmebehandlas genom torkning, kalcering och reduktion för att erhålla aktiv Co-metallkatalysator. En hög temperatur FTS användes för utbytet av alkoholer och andra bensinderivat enligt litteratur. Slutligen analyseras de flytande och gasformiga produkterna genom GC- eller GC / MS-analystekniker. Den outpromoterade Co-katalysatorns aktivitet betraktas som ett misslyckande på grund av tillfredsställande resultat. Det fanns några problem associerade med katalysatorn ensam som dålig mekanisk stabilitet som kunde tillskrivas användningen av ett felaktigt bindemedel. Andra problem inkluderade metanering på grund av variationer i slumpmässiga temperaturer och ineffektiv katalysatorreduktion. För den befordrade Co-katalysatorn var utbytet av alkoholer och kolväten betydligt högre än den opromoterade Co-katalysatorn. En optimal temperatur på 300 ° C, en GHSV på 360 h-1, ett tryck av 10 bar och ett H2: CO-förhållande på 1,3: 1 var de optimala bakgrundsbetingelserna för FTS. Högre temperatur orsakade metanering och reducerade sannolikhetsfaktorn för kedjan tillväxt, a, vilket resulterade i bildandet av endast lägre kolväten. Varje ökning av gasförhållandet och GHSV, ökade också metanbildningshastigheten och orsakade diffusionsbegränsningar. För en inställning i ett steg med reversering av avgaser var omvandlingsgraden för CO och H2 ganska lovande. Denna framgång kan tillskrivas en högre kalcineringstemperatur som ökade graden av reduktion av Co på grund av bildning av promotoroxider och därigenom möjliggör CO-hydrering och H2-införing. Det hjälpte också till att minska koldioxidbildningen. Även för Fe-katalysatorn föredrog man en låg temperatur, ett lågt GHSV och lågt syngasförhållande. Men till skillnad från Co-motsvarigheten gynnade ett högre tryck en ökning av utbytet av alkoholer och andra långkedjiga kolväten. Fe: s förmåga att stödja WGS-reaktion störde det molära förhållandet CO och frigav också mer CO2 som kan påverka hastigheten på syngasomvandlingen. Men i stort sett var Fe-katalysator mer effektiv än Cokatalysator för alkoholsyntes. Det totala utbytet av alkoholer var bara 5% av de flytande produkterna. Nästan 86% av alkoholfraktionen bestod av C1-, C2- och C3-alkoholer enbart och mycket få C4-, C5- och C6-alkoholer erhölls.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-259958
Date January 2019
CreatorsGanesan, Aravind
PublisherKTH, Energiteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-ITM-EX ; 2019:597

Page generated in 0.0027 seconds