Return to search

Short Carbon Fiber-Reinforced Thermoplastic Composites for Jet Engine Components

State-of-the-art aircraft engine manufactures aim to reduce theirenvironmental impact steadily. Thereby they attempt to increase engineefficiency, use new renewable fuel sources and most importantly aim toreduce component weight. While Titanium, Aluminum and continuousfiber reinforced thermosetting composites and superalloys prevail in thecurrent material selection, the present work desires to raise awareness fora novel group of materials; short carbon fiber reinforced thermoplasticcomposites (SCFRTPs). In this kind of composite short fibers givedimensional stability and strength while the thermoplastic matrix ensuresthe physical properties, even at temperatures up to 300°C.Even though in some applications these materials offer great potential tosave weight and cost, it is not clear if their properties suffice to be used indemanding areas of the aero engine and if they are still able provide costand weight reductions there.The present work therefore investigated potential aero-engine componentsthat could be replaced by SCFRTPs. With literature, manufacturer data andmaterial and process modelling approaches, it is shown that SCFRTPsmechanical and physical properties suffice for the selected component.Further it is shown that cost reductions up to 77% and weight savings upto 67% compared to the Ti-6Al-4V baseline component are possible.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-76733
Date January 2019
CreatorsBrunnacker, Lena
PublisherLuleå tekniska universitet, Institutionen för teknikvetenskap och matematik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds