Toric face rings are a generalization of Stanley-Reisner rings and affine monoid rings. New problems and results are obtained by a systematic study of toric face rings, shedding new lights to the understanding of Stanley-Reisner rings and affine monoid rings. We study algebra retracts of Stanley-Reisner rings, in particular, classify all the $\mathbb{Z}$-graded algebra retracts. We consider the Koszul property of toric face rings via Betti numbers and properties of the defining ideal. The last chapter is devoted to local cohomology of seminormal toric face rings and applications to singularities of toric face rings in positive characteristics.
Identifer | oai:union.ndltd.org:uni-osnabrueck.de/oai:repositorium.ub.uni-osnabrueck.de:urn:nbn:de:gbv:700-2012082110274 |
Date | 21 August 2012 |
Creators | Nguyen, Dang Hop |
Contributors | Prof. Dr. Tim Römer, Prof. Dr. Aldo Conca |
Source Sets | Universität Osnabrück |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf, application/zip |
Rights | http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0022 seconds