O presente trabalho descreve a síntese e caracterização de nanopartículas bimetálicas de cobalto e platina, estabilizadas por líquidos iônicos, para aplicação como catalisadores em reações de hidrogenação de monóxido de carbono (Reação Fischer-Tropsch) para produção de hidrocarbonetos. A formação das nanopartículas bimetálicas foi realizada pela hidrogenação dos precursores de cobalto (Cobaltoceno) e platina (Pt2dba3) dissolvidos em líquidos iônicos derivados do cátion imidazólio. A hidrogenação resultou em nanopartículas magnéticas de CoPt3 com tamanho médio de 7,3 nm utilizando o líquido iônico BMI.N(Tf)2 e nanopartículas magnéticas de CoPt3/Pt com tamanho médio de 7,2 nm utilizando o líquido iônico BMI.PF6. Análises de redução a temperatura programada comprovaram que a presença da platina diminuiu a temperatura de redução do cobalto. Para nanopartículas de CoPt3 a temperatura de redução foi de aproximadamente 215 °C enquanto que para as nanopartículas de CoPt3/Pt a temperatura de redução foi de aproximadamente 125 °C. Os testes catalíticos para reações de FT foram realizados utilizando uma célula de DRIFT (Harrick high temperature reaction chamber) como reator batelada, com pressão constante de 20 bar de uma mistura padrão de hidrogênio e monóxido de carbono (H2/CO = 2/1) e temperatura de 230 °C. As análises por espectroscopia no infravermelho foram realizadas após 16 h de reação, e os produtos formados foram analisados por cromatografia gasosa. As análises por cromatografia apresentaram distribuição de produtos diferentes entre as nanopartículas. A distribuição de produtos formados na reação FT, utilizando nanopartículas de CoPt3, apresentou 70% de hidrocarbonetos pesados (a1 = 0,52, a2 = 0,72). Utilizando as nanopartículas de CoPt3/Pt a formação de hidrocarbonetos pesados foi de apenas 44% (a1 = 0,60, a2 = 0,67) A maior quantidade de produtos leves foi atribuída ao mecanismo de reação via inserção de carbenos, favorecido pela maior quantidade de platina em nanopartículas de CoPt3/Pt. A presença de carbenos na superfície do catalisador foi compravada por análises de espectroscopia no infravermelho após 16h de reação. Estudos de cinética transiente comprovaram a formação de espécies ativas de carbono na superfície das nanopartículas logo no início da reação, porém as nanopartículas de CoPt3/Pt exibiram um processo lento de ativação quando comparadas as nanopartículas de CoPt3. Para ambos os casos a obtenção das condições para o estado-estacionário da reação foram alcançadas em aproximadamente 40 min de reação. Portanto, foi comprovado que a platina diminui a temperatura de redução do cobalto em nanopartículas bimetálicas. Também pôde-se observar que a platina favorece o mecanismo via inserção de carbenos na reação FT aumentando a quantidade de produtos leves. / This work describes the synthesis and characterization of cobalt and platinum bimetallic nanoparticles stabilized by ionic liquid for the synthesis of hydrocarbons by Fischer Tropsch reaction. The formation of bimetallic nanoparticles was performed by hydrogenation of cobalt and platinum precursors (cobaltocene and Pt2dba3) dissolved in imidazolium ionic liquids. The hydrogenation resulted in magnetic CoPt3 nanoparticles with average size of 7.3 nm when BMI.N(Tf)2 was used and magnetic CoPt3/Pt nanoparticles with average size of 7.2 nm when using BMI.PF6. The results from temperature programmed reduction analysis indicated that the platinum appreciably lowered the reduction temperature of cobalt. For CoPt3 nanoparticles the reduction temperature was approximately 215 °C and for CoPt3/Pt nanoparticles the reduction temperature was approximately 125°C. Catalytic tests for the Fischer-Tropsch reaction were performed using a DRIFT cell (Harrick high temperature reaction chamber) as a batch reactor under controlled temperature and constant pressure (20 bar of a H2/CO mixture, 2/1 molar ratio). The infrared analysis was performed after 16 h of reaction, and the products were analyzed by gas chromatography (GC). The GC results showed different product distributions and different growth probability for the nanoparticles. The use of CoPt3 nanoparticles resulted in the formation of 70% of C11+ hydrocarbons (a1 = 0.52, a2 = 0.72). When using CoPt3/Pt, the formation was only 44% of C11+ hydrocarbons (a1 = 0.60, a2 = 0.67). These differences of product distributions were attributed to favor carbene insertion mechanism when using CoPt3/Pt nanoparticles in FT reaction. The chemical transient kinetics analysis proved the formation of atomic carbon reactive species on metal surfaces of both nanoparticles. However CoPt3/Pt nanoparticles presented a slow activation process when compared with CoPt3. The conditions for steady-state were achieved in approximately 40 min of FT reaction for both nanoparticles. Therefore, the presence of platinum appreciably lowered the reduction of cobalt in bimetallic nanoparticles and favor the carbene insertion mechanism in FT reaction.
Identifer | oai:union.ndltd.org:IBICT/oai:lume56.ufrgs.br:10183/85131 |
Date | January 2013 |
Creators | Silva, Dagoberto de Oliveira |
Contributors | Dupont, Jairton, Ebeling, Gunter |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds