Return to search

Investigation of the Directed Self-Assembly Process in Bacteriophage Virus Structures using the Discrete Element Method

Current researchers have looked to nature to learn how self-assembly processes occur. By understanding the self-assembly process, designers can begin to build strong structural materials that are extremely light weight. The discrete element modeling method was used to gain a better understanding of the directed self-assembly of M13 bacteriophage. This model was parameterized from molecular dynamics simulations at the nanometer scale. Three types of functionalized bacteriophage were studied: Wild-type, 4E, and CLP8. Results showed that Wild-type phage are attracted in a head-to-tail orientation, but repelled in head-to-head orientation. The 4E bacteriophage behaved similarly with a stronger bond in the head-to-tail orientation, and CLP8 showed to physically repel in either orientation. The overall finding was that the electrostatic physics dominated as the controlling forces of the phage interactions.

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-3857
Date08 December 2017
CreatorsMcInnis, David Peter
PublisherScholars Junction
Source SetsMississippi State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.0019 seconds