Return to search

Evaluation of Chemical, Physical, and Sensory Properties of Tortillas Prepared from Nixtamalized Oats

Background and objectives: While alkaline nixtamalization has historically been used for corn, this process may have application in other cereals. Drawbacks to wider use include the lengthy steep time, as well as the volume of alkaline wastewater produced. This study evaluated a novel, waste-effluent-free nixtamalization process for oat (Avena sativa) masa, and compared properties of oat masa and tortillas prepared with 1, 1.5 and 2% lime, with and without steeping. Findings: A minimal water-addition, 45-min, simmering process, without steeping, was effluent-free, and produced oat tortillas comparable to those produced using a traditional overnight steep. The pH increased significantly with increasing lime content (r=0.982). Consumer overall-liking scores did not significantly differ across treatments, though appearance scores were significantly higher for 2% lime samples (p<0.05), which were significantly darker and more yellow, based on L* and b* values. Masa adhesiveness means ranged from 1.49-1.52 N, with no significant differences between the no-steep treatments. Higher lime addition (1.5-2%) in the no-steep process significantly improved tortilla flexibility, based on extensibility and rollability scores, though tortilla rupture force did not vary significantly across treatments. Tortilla rollability scores at 3-days were lowest (x=1.1 + 0.31, indicating less cracking) for the 1.5-2% lime no-steep treatments, which were significantly better than the steeped treatment (x=3.7 + 0.48). Consumers rated the steeped sample as significantly less flexible. B-vitamins were negatively impacted by increasing lime, while calcium increased significantly with lime addition. Conclusions: The no-steep, effluent-free nixtamalization process produced oat tortillas with good masa and tortilla texture, which were not significantly different in consumer liking to tortillas produced via a traditional process. Significance and novelty: This research suggests nixtamalization can be applied to other grains in a shorter, environmentally-friendly process, with broader commercial applicability.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-10067
Date10 December 2019
CreatorsBoza Arauz, Andrea
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttps://lib.byu.edu/about/copyright/

Page generated in 0.0016 seconds