Magíster en Bioquímica área de especialización en Bioquímica de Proteínas Recombinantes / Memoria de título de bioquímico / Licanantasa es la proteína predominante en el secretoma de Acidithiobacillus thiooxidans cuando es cultivada con azufre elemental. Se ha descrito que Licanantasa es capaz de incrementar la recuperación de cobre desde calcopirita cuando se utiliza como aditivo para la biolixiviación. Sin embargo, el mecanismo por el cual se favorece la biolixiviación todavía no es entendido. Por este motivo es de nuestro interés lograr predecir la estructura de Licanantasa, lo que permitirá mejorar la comprensión sobre su función.
Mediante un análisis bioinformático se estudió la secuencia de aminoácidos de Licanantasa. Se encontró una gran similitud con la Lipoproteína de Escherichia coli (Lpp) que forma trímeros estables en solución, compartiendo motivos de secreción, procesamiento, estructura hélice alfa y distribución de residuos hidrofóbicos en heptadas que forman un núcleo hidrofóbico, organización clásica de hélices sobre-enrolladas. De esta manera se propuso que la estructura de Licanantasa más probable corresponde a una hélice sobre-enrollada trimérica que estaría estabilizada por interacciones no enlazantes inter-monómero, indiferentes a las condiciones de pH en la que ésta proteína ejerce su función.
En este trabajo se abordó el problema utilizando herramientas in silico para la predicción de novo de estructuras oligoméricas, simulaciones de Dinámica Molecular (MD) y exploración del espacio conformacional de proteínas mediante simulaciones de Dinámica Molecular con intercambio de réplicas (REMD).
La estructura propuesta se predijo utilizando el algoritmo “Fold and Dock” de Rosetta para la predicción de estructuras oligoméricas. El trímero presentó las características estructurales esperadas: una hélice sobre-enrollada, un dominio “alanine-zipper” y residuos en posición para formar interacciones electrostáticas inter-monómero. Para estudiar la estabilidad estructural se realizaron simulaciones de MD y de REMD utilizando la estructura de Licanantasa, de Lpp y de la mutante con 14 alaninas de Lpp (Ala-14) que posee un dominio "alanine-zipper". Estas estructuras se simularon en sus estados de protonación a pH ácido y neutro. El proceso de desplegamiento fue similar para las tres proteínas y depende principalmente de las interacciones inter-monómeros, y de la conservación de la estructura secundaria. En las simulaciones, Licanantasa presentó el mayor número de contactos hidrofóbicos así como de puentes de hidrógeno que estabilizan la estructura secundaria. Esta mayor interfaz hidrofóbica se debe a su mayor extensión y a la presencia de residuos hidrofóbicos voluminosos en su extremo C-terminal. El mayor número de puentes de hidrógeno que estabilizan la estructura secundaria se debe a que posee una hélice alfa más extensa. De esta manera, Licanantasa presenta la mejor combinación de ambas características dentro de las proteínas estudiadas, requiriéndose una mayor cantidad de energía para producir el desplegamiento. / Licanantase was found as the major component of the secretome of Acidithiobacillus thiooxidans when grown in elemental sulfur. It has been described that Licanantase is able to improve copper recovery from bio-leaching when it is used as additive. However the mechanism by which the bio-leaching rate is enhanced is not yet understood. Because of this our interest is to predict the structure of Licanantase in order to improve the understanding of its role in the bio-leaching process.
A bioinformatics analysis was done using the amino acid sequence of Licanantase. Our findings show a great similarity with the Lipoprotein of Escherichia coli (Lpp) which can form stable trimers in solution, sharing secretion motif, processing and alpha helix structure, as well as the distribution of hydrophobic residues in heptads, forming a hydrophobic core, typical of coiled-coil structures. Thus it is proposed that the most probable structure for Licanantase is a trimeric coiled-coil, which would be stabilized by inter-monomer nonbonding interactions, insensitive to pH conditions in which this protein exerts its function.
In this work in silico tools were used for de novo prediction of oligomeric structures, Molecular Dynamics (MD) and for the exploration of conformational space by Replica Exchange Molecular Dynamics (REMD) simulations.
The proposed structure was predicted using the Rosetta Fold and Dock algorithm for oligomeric structures prediction. The trimer showed the expected structural features: a coiled-coil structure, an alanine-zipper domain and residues in position to form inter-monomer electrostatic interactions.
In order to study structural stability, MD and REMD simulations were performed for Licanantase, Lpp and 14-alanine Lpp mutant (Ala-14) which has an alanine-zipper domain. These structures were simulated in its protonation states at acid and neutral pH. The unfolding process was similar for all proteins in study and it depends mainly of inter-monomer interactions and preservation of secondary structure. In simulations, Licanantase showed the greatest number of both hydrophobic contacts and hydrogen bonds that stabilize secondary structure. This greater hydrophobic interface is due to its greater extension and the presence of voluminous hydrophobic residues in its C-terminal end. The greater number of hydrogen bonds that stabilize secondary structure is due to a longer alpha helix structure. Thus, Licanantase shows the best combination of both features among studied proteins, requiring a greater amount of energy to produce unfolding. / Fondap
Identifer | oai:union.ndltd.org:UCHILE/oai:repositorio.uchile.cl:2250/113500 |
Date | January 2012 |
Creators | Abarca Flores, Fernando Fabián |
Contributors | Pérez-Acle, Tomás, Parada Valdecantos, Pilar Angélica, Facultad de Ciencias Químicas y Farmacéuticas |
Publisher | Universidad de Chile |
Source Sets | Universidad de Chile |
Language | Spanish |
Detected Language | Spanish |
Type | Tesis |
Page generated in 0.0029 seconds