Long short-term volume forecasting is essential for companies regarding their logistics service operations. It is crucial for logistic companies to predict the volumes of goods that will be delivered to various centers at any given day, as this will assist in managing the efficiency of their business operations. This research aims to create a forecasting model for outbound logistics volumes by utilizing design science research methodology in building 3 machine-learning models and evaluating the performance of the models . The dataset is provided by Tetra Pak AB, the World's leading food processing and packaging solutions company,. Research methods were mainly quantitative, based on statistical data and numerical calculations. Three algorithms were implemented: which are encoder–decoder networks based on Long Short-Term Memory (LSTM), Convolutional Long Short-Term Memory (ConvLSTM), and Convolutional Neural Network Long ShortTerm Memory (CNN-LSTM). Comparisons are made with the average Root Mean Square Error (RMSE) for six distribution centers (DC) of Tetra Pak. Results obtained from encoder–decoder networks based on LSTM are compared to results obtained by encoder–decoder networks based on ConvLSTM and CNN-LSTM. The three algorithms performed very well, considering the loss of the Train and Test with our multivariate time series dataset. However, based on the average score of the RMSE, there are slight differences between algorithms for all DCs.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mau-61656 |
Date | January 2023 |
Creators | Otuodung, Enobong Paul, Gorhan, Gulten |
Publisher | Malmö universitet, Fakulteten för teknik och samhälle (TS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds