Return to search

Estimation de fonctions géométriques et déconvolution

Le travail présenté se divise en trois partie. Dans un premier temps, nous montrons que le formalisme de la sélection de modèles permet d'établir la vitesse de décroissance de l'erreur d'estimation d'un estimateur par seuillage dans une base orthogonale de bandlettes d'une image bruitée par un bruit additif gaussien pour un modèle d'images géométriquement régulières. Cette vitesse étant optimale à un facteur logarithmique près pour les fonctions de régularité C_alpha en dehors de courbes C_alpha. Dans un second temps, nous montrons qu'une approche similaire permet également d'atteindre un estimateur optimal pour l'inversion de l'opérateur de tomographie sur la même classe de fonctions. Dans une troisième partie nous analysons la déconvolution sparse spike 1D par minimisation l_1 et montrons qu'une distance minimum entre les spikes, dépendant du filtre assure la reconstruction exacte de la déconvolution par minimisation l_1

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00855128
Date05 December 2005
CreatorsDossal, Charles
PublisherEcole Polytechnique X
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0018 seconds