• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 26
  • 4
  • Tagged with
  • 72
  • 35
  • 28
  • 27
  • 26
  • 22
  • 21
  • 19
  • 16
  • 16
  • 16
  • 15
  • 12
  • 12
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Géométrie multi-échelles pour les images et les textures

Peyré, Gabriel 13 December 2005 (has links) (PDF)
Cette thèse est consacrée à la représentation de la géométrie des images. Pour obtenir une représentation efficace il faut modéliser l'information géométrique et on construit des outils pour traiter ce modèle. Ces deux ingrédients vont de paire, s'influençant mutuellement pour obtenir un résultat satisfaisant, c'est à dire un modèle pertinent et des algorithmes rapides et performants.<br>On propose donc une modélisation géométrique des images, l'ambition étant de pouvoir extraire l'information contenue dans les images naturelles, c'est-à-dire les images qui nous entourent. Ce problème est bien sûr difficile car la géométrie des images est complexe et variable.
2

Approches bayésiennes pour le débruitage des images dans le domaine des transformées multi-échelles parcimonieuses orientées et non orientées

Boubchir, Larbi 04 July 2007 (has links) (PDF)
Les images issues d'une chaîne d'acquisition sont généralement dégradées par le bruit du capteur. La tâche qui consiste à restaurer une image de bonne qualité à partir de sa version bruitée est communément appelée débruitage. Celui-ci a engendré une importante littérature en pré-traitement des images. Lors de ce travail de thèse, et après avoir posé le problème du débruitage en présence d'un bruit additif gaussien, nous avons effectué un état de l'art méthodique sur ce sujet. Les méthodes présentées cherchent pour la plupart à reconstruire une solution qui présente une certaine régularité. En s'appuyant sur un cadre bayésien, la régularité de la solution, qui peut être imposée de différentes manières, a été formellement mise en place en passant dans le domaine des transformées multi-échelle. Ainsi, afin d'établir un modèle d'a priori, nous avons mené une modélisation des statistiques marginales et jointes des coefficients d'images dans le domaine des transformées multi-échelles orientées (e.g. curvelets) et non-orientées (e.g. ondelettes). Ensuite, nous avons proposé de nouveaux estimateurs bayésiens pour le débruitage. La mise en œuvre de ces estimateurs est effectuée en deux étapes, la première consistant à estimer les hyperparamètres du modèle de l'a priori en présence du bruit et la seconde à trouver une forme analytique pour l'estimateur bayésien correspondant. Dans un premier temps, nous avons mis en place des estimateurs bayésiens univariés en mettant à profit les statistiques marginales des coefficients des images dans des représentations multi-échelle comme les ondelettes. Ces lois marginales ont été analytiquement modélisées par le biais des distributions: ?-stable et les Formes K de Bessel. Dans un second temps, nous avons amélioré les performances de nos estimateurs univariés en introduisant l'information géométrique dans le voisinage des coefficients. Plus précisément, nous avons proposé un cadre statistique bayésien multivarié permettant de prendre en compte les dépendances inter- et intra-échelle des coefficients, en mettant à profit les statistiques jointes de ces derniers dans le domaine des curvelets et des ondelettes non décimées. Ensuite, nous avons mis en place l'estimateur bayésien multivarié correspondant basé sur une extension multivariée de la distribution des Formes K de Bessel. Une large étude comparative a finalement été menée afin de confronter nos algorithmes de débruitage à d'autres débruiteurs de l'état de l'art.
3

Mise en place de techniques d'imagerie cardiaque par résonance magnétique chez le petit animal / Implementation of cardiac magnetic resonance imaging techniques in small animals

Tricot, Benoit January 2012 (has links)
Résumé: L'imagerie par résonance magnétique (IRM) est un outil de choix en clinique pour la détection des maladies cardiovasculaires. Ses résolutions spatiale et temporelle élevées en font une technique fiable pour l'évaluation de la structure, de la fonction, de la perfusion ou encore de la viabilité du muscle du myocarde. Les modèles animaux, et plus particulièrement le rat et la souris transgénique, sont de plus en plus utilisés pour étudier les gènes et les mécanismes biologiques mis en cause dans les maladies cardiaques. L'IRM est devenue la méthode de référence pour l'étude non-invasive de ces modèles, et ce malgré des différences physiologiques comme la fréquence cardiaque élevée (jusqu'à 600 battements par minute chez la souris) ou la taille de l'animal qui rendent l'acquisition d'images plus ardue que dans le cadre clinique. Cependant, il est possible d'obtenir des images de bonne qualité grâce aux appareils dédiés à haut Champ, à des nouvelles stratégies de synchronisation des acquisitions et à l'utilisation de séquences d'impulsions optimisées pour l'imagerie du petit animal. Les travaux rapportés dans ce mémoire portent sur la mise en place de ces techniques sur l'appareil IRM 7 T du Centre d'Imagerie Moléculaire de Sherbrooke (CIMS). Nous donnons un aperçu des possibilités offertes par l'IRM cardiaque chez le petit animal, puis nous présentons le matériel et les méthodes utilisées pour réaliser l'étude de la fonction cardiaque chez le rat avec l'imagerie cinématique. Dans cette étude, nous proposons l'utilisation d'une technique de débruitage afin d'améliorer l'évaluation quantitative des paramètres de la fonction cardiaque. Enfin, nous détaillons le développement de deux séquences d'impulsions appliquées à un modèle d'infarctus du myocarde chez le rat : une séquence d'inversion-récupération pour l'imagerie de rehaussement tardif au gadolinium et une séquence de préparation T2 pour l'imagerie de pondération T2. // Abstract: Magnetic Resonance Imaging (MRI) is a clinically valuable tool for the detection of cardiovascular diseases. Its high temporal and spatial resolutions have established it as a reliable technique for assessment of cardiac structure, fonction, perfusion, and myocardial viability. Animal models, and particularly rats and transgenic mice, are increasingly used for the study of genes and biological mechanisms involved in heart diseases. MRI has become the gold-standard for the non-invasive examination of these models, despite physiological differences such as the rapid heart rate (up to 600 beats per minute for the mouse) and the animal size, that make its application more challenging than clinical imaging. However, high-quality images can be obtained with dedicated high-field MRI scanners, novel gating strategies and optimised pulse sequences. The work reported in this thesis consists in the implementation of these techniques on the dedicated 7 T MRI scanner at the Sherbrooke Molecular Imaging Center. We first provide an overview of the possibilities offered by cardiac MRI in small animals, then we present the material and methods for the study of cardiac function in rats with cine-imaging. In this study, we propose the use of a denoising technique as a way to improve the evaluation of global cardiac function parameters. Finally, we explain in detail the development of two pulse sequences for their application in a myocardial infarction model : an inversion-recovery sequence for late gadolinium enhancement imaging and a T2-prepared sequence for T2-weighted imaging.
4

Analyse de signaux et d'images par bancs de filtres : applications aux géosciences

Gauthier, Jérôme 20 June 2008 (has links) (PDF)
Afin de réaliser des traitements locaux sur des données de diverses natures (volumes, images ou signaux) contenant des éléments informatifs dans certaines bandes de fréquence, nous nous intéressons dans cette thèse à l'étude de bancs de filtres (BdF). Plus précisément, nous étudions l'existence et la synthèse de BdF de réponses impulsionnelles finies (RIF) inverses d'un BdF d'analyse RIF redondant complexe fixé. Nous proposons en particulier des méthodes testant l'inversibilité de la matrice d'analyse et la construction d'un inverse explicite à l'aide de la formulation polyphase. À partir de ce dernier, nous proposons une paramétrisation réduite de l'ensemble des BdF de synthèse permettant d'optimiser leurs réponses selon différents critères. Cette étude est étendue au cas multidimensionnel notamment par l'utilisation de la notion de résultant. Ces outils permettant de représenter efficacement certaines informations structurées dans des données, il devient possible de les préserver tout en rejetant d'éventuelles perturbations. Le premier cadre considéré est celui du bruit gaussien. Nous avons utilisé le principe de Stein pour proposer deux méthodes de débruitage : FB-SURELET-E et FBSURELET-C. Elles sont comparées à des méthodes récentes de débruitage conduisant à de bons résultats en particulier pour des images texturées. Un autre type d'application est ensuite considéré : la séparation des structures orientées. Afin de traiter ce problème, nous avons développé une méthode de filtrage anisotrope. Les algorithmes réalisés sont finalement testés sur des données issues de différents domaines applicatifs (sismique, microscopie, vibrations)
5

Signal subspace identification for epileptic source localization from electroencephalographic data / Suppression du bruit de signaux EEG épileptiques

Hajipour Sardouie, Sepideh 09 October 2014 (has links)
Lorsque l'on enregistre l'activité cérébrale en électroencéphalographie (EEG) de surface, le signal d'intérêt est fréquemment bruité par des activités différentes provenant de différentes sources de bruit telles que l'activité musculaire. Le débruitage de l'EEG est donc une étape de pré-traitement important dans certaines applications, telles que la localisation de source. Dans cette thèse, nous proposons six méthodes permettant la suppression du bruit de signaux EEG dans le cas particulier des activités enregistrées chez les patients épileptiques soit en période intercritique (pointes) soit en période critique (décharges). Les deux premières méthodes, qui sont fondées sur la décomposition généralisée en valeurs propres (GEVD) et sur le débruitage par séparation de sources (DSS), sont utilisées pour débruiter des signaux EEG épileptiques intercritiques. Pour extraire l'information a priori requise par GEVD et DSS, nous proposons une série d'étapes de prétraitement, comprenant la détection de pointes, l'extraction du support des pointes et le regroupement des pointes impliquées dans chaque source d'intérêt. Deux autres méthodes, appelées Temps Fréquence (TF) -GEVD et TF-DSS, sont également proposées afin de débruiter les signaux EEG critiques. Dans ce cas on extrait la signature temps-fréquence de la décharge critique par la méthode d'analyse de corrélation canonique. Nous proposons également une méthode d'Analyse en Composantes Indépendantes (ICA), appelé JDICA, basée sur une stratégie d'optimisation de type Jacobi. De plus, nous proposons un nouvel algorithme direct de décomposition canonique polyadique (CP), appelé SSD-CP, pour calculer la décomposition CP de tableaux à valeurs complexes. L'algorithme proposé est basé sur la décomposition de Schur simultanée (SSD) de matrices particulières dérivées du tableau à traiter. Nous proposons également un nouvel algorithme pour calculer la SSD de plusieurs matrices à valeurs complexes. Les deux derniers algorithmes sont utilisés pour débruiter des données intercritiques et critiques. Nous évaluons la performance des méthodes proposées pour débruiter les signaux EEG (simulés ou réels) présentant des activités intercritiques et critiques épileptiques bruitées par des artéfacts musculaires. Dans le cas des données simulées, l'efficacité de chacune de ces méthodes est évaluée d'une part en calculant l'erreur quadratique moyenne normalisée entre les signaux originaux et débruités, et d'autre part en comparant les résultats de localisation de sources, obtenus à partir des signaux non bruités, bruités, et débruités. Pour les données intercritiques et critiques, nous présentons également quelques exemples sur données réelles enregistrées chez des patients souffrant d'épilepsie partielle. / In the process of recording electrical activity of the brain, the signal of interest is usually contaminated with different activities arising from various sources of noise and artifact such as muscle activity. This renders denoising as an important preprocessing stage in some ElectroEncephaloGraphy (EEG) applications such as source localization. In this thesis, we propose six methods for noise cancelation of epileptic signals. The first two methods, which are based on Generalized EigenValue Decomposition (GEVD) and Denoising Source Separation (DSS) frameworks, are used to denoise interictal data. To extract a priori information required by GEVD and DSS, we propose a series of preprocessing stages including spike peak detection, extraction of exact time support of spikes and clustering of spikes involved in each source of interest. Two other methods, called Time Frequency (TF)-GEVD and TF-DSS, are also proposed in order to denoise ictal EEG signals for which the time-frequency signature is extracted using the Canonical Correlation Analysis method. We also propose a deflationary Independent Component Analysis (ICA) method, called JDICA, that is based on Jacobi-like iterations. Moreover, we propose a new direct algorithm, called SSD-CP, to compute the Canonical Polyadic (CP) decomposition of complex-valued multi-way arrays. The proposed algorithm is based on the Simultaneous Schur Decomposition (SSD) of particular matrices derived from the array to process. We also propose a new Jacobi-like algorithm to calculate the SSD of several complex-valued matrices. The last two algorithms are used to denoise both interictal and ictal data. We evaluate the performance of the proposed methods to denoise both simulated and real epileptic EEG data with interictal or ictal activity contaminated with muscular activity. In the case of simulated data, the effectiveness of the proposed algorithms is evaluated in terms of Relative Root Mean Square Error between the original noise-free signals and the denoised ones, number of required ops and the location of the original and denoised epileptic sources. For both interictal and ictal data, we present some examples on real data recorded in patients with a drug-resistant partial epilepsy.
6

Débruitage, séparation et localisation de sources EEG dans le contexte de l'épilepsie / Denoising, separation and localization of EEG sources in the context of epilepsy

Becker, Hanna 24 October 2014 (has links)
L'électroencéphalographie (EEG) est une technique qui est couramment utilisée pour le diagnostic et le suivi de l'épilepsie. L'objectif de cette thèse consiste à fournir des algorithmes pour l'extraction, la séparation, et la localisation de sources épileptiques à partir de données EEG. D'abord, nous considérons deux étapes de prétraitement. La première étape vise à éliminer les artéfacts musculaires à l'aide de l'analyse en composantes indépendantes (ACI). Dans ce contexte, nous proposons un nouvel algorithme par déflation semi-algébrique qui extrait les sources épileptiques de manière plus efficace que les méthodes conventionnelles, ce que nous démontrons sur données EEG simulées et réelles. La deuxième étape consiste à séparer des sources corrélées. A cette fin, nous étudions des méthodes de décomposition tensorielle déterministe exploitant des données espace-temps-fréquence ou espace-temps-vecteur-d'onde. Nous comparons les deux méthodes de prétraitement à l'aide de simulations pour déterminer dans quels cas l'ACI, la décomposition tensorielle, ou une combinaison des deux approches devraient être utilisées. Ensuite, nous traitons la localisation de sources distribuées. Après avoir présenté et classifié les méthodes de l'état de l'art, nous proposons un algorithme pour la localisation de sources distribuées qui s'appuie sur les résultats du prétraitement tensoriel. L'algorithme est évalué sur données EEG simulées et réelles. En plus, nous apportons quelques améliorations à une méthode de localisation de sources basée sur la parcimonie structurée. Enfin, une étude des performances de diverses méthodes de localisation de sources est conduite sur données EEG simulées. / Electroencephalography (EEG) is a routinely used technique for the diagnosis and management of epilepsy. In this context, the objective of this thesis consists in providing algorithms for the extraction, separation, and localization of epileptic sources from the EEG recordings. In the first part of the thesis, we consider two preprocessing steps applied to raw EEG data. The first step aims at removing muscle artifacts by means of Independent Component Analysis (ICA). In this context, we propose a new semi-algebraic deflation algorithm that extracts the epileptic sources more efficiently than conventional methods as we demonstrate on simulated and real EEG data. The second step consists in separating correlated sources that can be involved in the propagation of epileptic phenomena. To this end, we explore deterministic tensor decomposition methods exploiting space-time-frequency or space-time-wave-vector data. We compare the two preprocessing methods using computer simulations to determine in which cases ICA, tensor decomposition, or a combination of both should be used. The second part of the thesis is devoted to distributed source localization techniques. After providing a survey and a classification of current state-of-the-art methods, we present an algorithm for distributed source localization that builds on the results of the tensor-based preprocessing methods. The algorithm is evaluated on simulated and real EEG data. Furthermore, we propose several improvements of a source imaging method based on structured sparsity. Finally, a comprehensive performance study of various brain source imaging methods is conducted on physiologically plausible, simulated EEG data.
7

Débruitage de séquences par approche multi-échelles : application à l'imagerie par rayons X / Spatio-temporal denoising using a multi-scale approach : application to fluoroscopic X-ray image sequences

Amiot, Carole 18 December 2014 (has links)
Les séquences fluoroscopiques, acquises à de faibles doses de rayons X, sont utilisées au cours de certaines opérations médicales pour guider le personnel médical dans ces actes. Cependant, la qualité des images obtenues est inversement proportionnelle à cette dose. Nous proposons dans ces travaux un algorithme de réduction de bruit permettant de compenser les effets d'une réduction de la dose d'acquisition et donc garantissant une meilleure protection pour le patient et le personnel médical. Le filtrage développé est un filtre spatio-temporel s'appuyant sur les représentations multi-échelles 2D des images de la séquence pour de meilleures performances. Le filtre temporel récursif d'ordre 1 et compensé en mouvement permet une forte réduction de bruit. Il utilise une détection et un suivi des objets de la séquence. Ces deux étapes déterminent le filtrage spatio-temporel de chaque coefficient multi-échelles. Le filtrage spatial est un seuillage contextuel utilisant le voisinage multi-échelles des coefficients pour éviter l'apparition d'artefacts de forme dans les images reconstruites. La méthode proposée est testée dans deux espaces multi-échelles différents, les curvelets et les ondelettes complexes suivant l'arbre dual. Elle offre des performances supérieures à celles des meilleures méthodes de l'état de l'art. / Acquired with low doses of X-rays, fluoroscopic sequences are used to guide the medical staff during some medical procedures. However, image quality is inversely proportional to acquisition doses. We present here a noise reduction algorithm compensating for the effects of an acquisition at a reduced dose. Such a reduction enables better health protection for the patient as well as for the medical staff. The proposed method is based on a spatio-temporal filter applied on the 2D multi-scales representations of the sequence images to allow for a greater noise reduction. The motion-compensated, recursive filter acccounts for most of the noise reduction. It is composed of a detection and pairing step, which output determines how a coefficient is filtered. Spatial filtering is based on a contextual thresholding to avoid introducing shape-like artifacts. We compare this filtering both in the curvelet and dual-tree complex wavelet domains and show it offers better results than state-of-the-art methods.
8

Débruitage, alignement et reconstruction 3D automatisés en tomographie électronique : applications en sciences des matériaux / Automatic denoising, alignment and reconstruction in electron tomography : materials science applications

Printemps, Tony 24 November 2016 (has links)
La tomographie électronique est une technique de nano-caractérisation 3D non destructive. C’est une technique de choix dans le domaine des nanotechnologies pour caractériser des structures tridimensionnelles complexes pour lesquelles l’imagerie 2D en microscopie électronique en transmission seule n’est pas suffisante. Toutes les étapes nécessaires à la réalisation d’une reconstruction 3D en tomographie électronique sont investiguées dans cette thèse, de la préparation d’échantillon aux algorithmes de reconstruction, en passant par l’acquisition des données et l’alignement. Les travaux entrepris visent en particulier (i) à développer une algorithmie complète incluant débruitage, alignement et reconstruction automatisés afin de rendre la technique plus robuste et donc utilisable en routine (ii) à étendre la tomographie électronique à des échantillons plus épais ou ayant subis une déformation en cours d’acquisition et enfin (iii) à améliorer la tomographie électronique chimique en essayant d’exploiter au maximum toutes les informations disponibles. Toutes ces avancées ont pu être réalisées en s’intéressant particulièrement aux échantillons permettant une acquisition sur une étendue angulaire idéale de 180°. Un logiciel a également été développé au cours de cette thèse synthétisant la majeure partie de ces avancées pour permettre de réaliser simplement toutes les étapes de tomographie électronique post-acquisition. / Electron tomography is a 3D non-destructive nano-characterization technique. It is an essential technique in the field of nanotechnologies to characterize complex structures particularly when 2D projections using a transmission electron microscope (TEM) are inappropriate for understanding the 3D sample morphology. During this thesis each one of the necessary steps of electron tomography have been studied: sample preparation, TEM acquisition, projection alignment and inversion algorithms. The main contributions of this thesis are (i) the development of a new complete procedure of automatic denoising, alignment and reconstruction for a routine use of electron tomography (ii) the extension of the technique to thicker specimen and specimen being damaged during the acquisition and finally (iii) the improvement of chemical tomography reconstructions using as much information as possible. All those contributions are possible taking advantage of the use of needle-shaped samples to acquire projections on an ideal tilt range of 180°. A software has been developed during this thesis to allow users to simply apply most of the contributions proposed in this work.
9

Processus alpha-stables pour le traitement du signal / Alpha-stable processes for signal processing

Fontaine, Mathieu 12 June 2019 (has links)
En traitement du signal audio, le signal observé est souvent supposé être égal à la somme des signaux que nous souhaitons obtenir. Dans le cadre d'une modélisation probabiliste, il est alors primordial que les processus stochastiques préservent leur loi par sommation. Le processus le plus employé et vérifiant cette stabilité est le processus gaussien. Comparé aux autres processus α - stables vérifiant la même stabilité, les processus gaussiens ont la particularité d'admettre des outils statistiques facilement interprétables comme la moyenne et la covariance. L'existence de ces moments permet d'esquisser des méthodes statistiques en séparation des sources sonores (SSS) et plus généralement, en traitement du signal. La faiblesse de ces processus réside néanmoins dans l'incapacité à s'écarter trop loin de leurs moyennes. Cela limite la dynamique des signaux modélisables et peut provoquer des instabilités dans les méthodes d'inférence considérées. En dépit de non-existence d'une forme analytique des densités de probabilités, les processus α - stables jouissent de résultats non valables dans le cas gaussien. Par exemple, un vecteur α - stable non-gaussien admet une représentation spatiale unique. En résumé, le comportement d'une distribution multivariée α - stable est contrôlé par deux opérateurs. Une mesure dite «spectrale» informant sur l'énergie globale venant de chaque direction de l'espace et un vecteur localisant le centroïde de sa densité de probabilité. Ce mémoire de thèse introduit différents modèles α - stables d’un point de vue théorique et les développe dans plusieurs directions. Nous proposons notamment une extension de la théorie de filtrage α - stable monocanal au cas multicanal. En particulier, une nouvelle représentation spatiale pour les vecteurs α - stables est adoptée. Nous développons en outre un modèle de débruitage où le bruit et la parole découlent de distributions α - stables mais ayant un exposant caractéristique α différent. La valeur d' α permet de contrôler la stationnarité de chaque source. Grâce à ce modèle hybride, nous avons également déduit une explication rigoureuse sur des filtrages de Wiener heuristiques esquissés dans les années 80. Une autre partie de ce manuscrit décrit en outre comment la théorie α - stable permet de fournir une méthode pour la localisation de sources sonores. En pratique, elle nous permet d'en déduire si une source est active à un endroit précis de l'espace. / It is classic in signal processing to model the observed signal as the sum of desired signals. If we adopt a probabilistic model, it is preferable that law of the additive processes is stable by summation. The Gaussian process notoriously satisfies this condition. It admits useful statistical operators as the covariance and the mean. The existence of those moments allows to provide a statistical model for SSS. However, Gaussian process has difficulty to deviate from its mean. This drawback limits signal dynamics and may cause unstable inference methods. On the contrary, non-Gaussian α - stable processes are stable under addition, and permit the modeling of signals with considerable dynamics. For the last few decades, α -stable theory have raised mathematical challenges and have already been shown to be effective in filtering applications. This class of processes enjoys outstanding properties, not available in the Gaussian case. A major asset for signal processing is the unique spatial representation of a multivariate α - stable vector, controlled by a so-called spectral measure and a deterministic vector. The spectral measure provides information on the global energy coming from all space directions while the vector localizes the centroid of the probability density function. This thesis introduces several α -stables models, with the aim of extending them in several directions. First, we propose an extension of single-channel α - stable filtering theory to a multichannel one. In particular, a novel spatial representation for α - stable vectors is proposed. Secondly, we develop α - stable models for denoising where each component could admit a different α . This hybrid model provides a rigorous explanation of some heuristic Wiener filters outlined in the 1980s. We also describe how the α - stable theory yields a new method for audio source localization. We use the spectral measure resulting from the spatial representation of α - stable vectors. In practice, it leads to determine whether a source is active at a specific location. Our work consisted in investigating the α -stable theory for signal processing and developing several models for a wide range of applications. The models introduced in this thesis could also be extend to more signal processing tasks. We could use our mutivariate α - stable models to dereverberation or SSS. Moreover, the localization algorithm is implementable for room geometry estimation.
10

Outils de traitement d'images adaptés au traitement d'images omnidirectionnelles

Bigot-Marchand, Stéphanie 15 October 2008 (has links) (PDF)
Cette thèse est consacrée au développement d'outils de traitement adaptés aux images omnidirectionnelles grâce à la "sphère équivalente". En effet, l'utilisation directe de méthodes classiques (c'est-à-dire appropriées aux images réelles) sur des images omnidirectionnelles introduit des erreurs car elle ne prend pas en considération les distorsions introduites par le miroir. Projeter les images omnidirectionnelles sur cette sphère offre l'avantage de pouvoir effectuer les différents traitements sur un espace plus uniforme. Dans un premier temps, nous rappelons le principe de la vision omnidirectionnelle, puis nous nous attardons sur un capteur en particulier, celui composé d'une caméra observant un miroir parabolique. Nous donnons ensuite les éléments de démonstration pour justifier l'existence de la "sphère équivalente". Dans un second temps, nous présentons différents outils mathématiques (harmoniques sphériques, convolution sphérique...) nécessaires au développement de nos méthodes sphériques. Nous proposons ensuite la construction de plusieurs traitements bas-niveaux adaptés aux images sphériques : débruitage et détection de contours. Ces différentes méthodes ont fait l'objet de tests afin de déterminer leurs avantages par rapport aux "méthodes classiques" de traitements d'images omnidirectionnelles. Ces comparaisons ont mis en évidence l'avantage de ces "méthodes sphériques" qui offrent un traitement uniforme sur toute l'image.

Page generated in 0.0652 seconds