Return to search

Processus alpha-stables pour le traitement du signal / Alpha-stable processes for signal processing

En traitement du signal audio, le signal observé est souvent supposé être égal à la somme des signaux que nous souhaitons obtenir. Dans le cadre d'une modélisation probabiliste, il est alors primordial que les processus stochastiques préservent leur loi par sommation. Le processus le plus employé et vérifiant cette stabilité est le processus gaussien. Comparé aux autres processus α - stables vérifiant la même stabilité, les processus gaussiens ont la particularité d'admettre des outils statistiques facilement interprétables comme la moyenne et la covariance. L'existence de ces moments permet d'esquisser des méthodes statistiques en séparation des sources sonores (SSS) et plus généralement, en traitement du signal. La faiblesse de ces processus réside néanmoins dans l'incapacité à s'écarter trop loin de leurs moyennes. Cela limite la dynamique des signaux modélisables et peut provoquer des instabilités dans les méthodes d'inférence considérées. En dépit de non-existence d'une forme analytique des densités de probabilités, les processus α - stables jouissent de résultats non valables dans le cas gaussien. Par exemple, un vecteur α - stable non-gaussien admet une représentation spatiale unique. En résumé, le comportement d'une distribution multivariée α - stable est contrôlé par deux opérateurs. Une mesure dite «spectrale» informant sur l'énergie globale venant de chaque direction de l'espace et un vecteur localisant le centroïde de sa densité de probabilité. Ce mémoire de thèse introduit différents modèles α - stables d’un point de vue théorique et les développe dans plusieurs directions. Nous proposons notamment une extension de la théorie de filtrage α - stable monocanal au cas multicanal. En particulier, une nouvelle représentation spatiale pour les vecteurs α - stables est adoptée. Nous développons en outre un modèle de débruitage où le bruit et la parole découlent de distributions α - stables mais ayant un exposant caractéristique α différent. La valeur d' α permet de contrôler la stationnarité de chaque source. Grâce à ce modèle hybride, nous avons également déduit une explication rigoureuse sur des filtrages de Wiener heuristiques esquissés dans les années 80. Une autre partie de ce manuscrit décrit en outre comment la théorie α - stable permet de fournir une méthode pour la localisation de sources sonores. En pratique, elle nous permet d'en déduire si une source est active à un endroit précis de l'espace. / It is classic in signal processing to model the observed signal as the sum of desired signals. If we adopt a probabilistic model, it is preferable that law of the additive processes is stable by summation. The Gaussian process notoriously satisfies this condition. It admits useful statistical operators as the covariance and the mean. The existence of those moments allows to provide a statistical model for SSS. However, Gaussian process has difficulty to deviate from its mean. This drawback limits signal dynamics and may cause unstable inference methods. On the contrary, non-Gaussian α - stable processes are stable under addition, and permit the modeling of signals with considerable dynamics. For the last few decades, α -stable theory have raised mathematical challenges and have already been shown to be effective in filtering applications. This class of processes enjoys outstanding properties, not available in the Gaussian case. A major asset for signal processing is the unique spatial representation of a multivariate α - stable vector, controlled by a so-called spectral measure and a deterministic vector. The spectral measure provides information on the global energy coming from all space directions while the vector localizes the centroid of the probability density function. This thesis introduces several α -stables models, with the aim of extending them in several directions. First, we propose an extension of single-channel α - stable filtering theory to a multichannel one. In particular, a novel spatial representation for α - stable vectors is proposed. Secondly, we develop α - stable models for denoising where each component could admit a different α . This hybrid model provides a rigorous explanation of some heuristic Wiener filters outlined in the 1980s. We also describe how the α - stable theory yields a new method for audio source localization. We use the spectral measure resulting from the spatial representation of α - stable vectors. In practice, it leads to determine whether a source is active at a specific location. Our work consisted in investigating the α -stable theory for signal processing and developing several models for a wide range of applications. The models introduced in this thesis could also be extend to more signal processing tasks. We could use our mutivariate α - stable models to dereverberation or SSS. Moreover, the localization algorithm is implementable for room geometry estimation.

Identiferoai:union.ndltd.org:theses.fr/2019LORR0037
Date12 June 2019
CreatorsFontaine, Mathieu
ContributorsUniversité de Lorraine, Badeau, Roland, Liutkus, Antoine
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0044 seconds