• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 11
  • 1
  • Tagged with
  • 23
  • 23
  • 15
  • 12
  • 9
  • 8
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Approximations non-linéaires pour l'analyse de signaux sonores

Gribonval, Rémi 07 September 1999 (has links) (PDF)
La classification de signaux en grande dimension rend nécessaire la sélection d'un petit nombre de structures caractéristiques pour représenter chaque signal. Les approximations non-linéaires donnent lieu à des représentations concises, parce qu'elles s'adaptent à la structure de chaque signal analysé. Leur emploi est prometteur. Une première partie du travail du thèse définit des représentations adaptatives rapides de signaux comme combinaisons linéaires d'atomes extraits d'un dictionnaire de vecteurs. A partir de l'algorithme de Matching Pursuit, plusieurs méthodes itératives sont proposées pour mettre en lumière les structures caractéristiques des signaux sonores. Le Matching Pursuit Harmonique décompose un signal en composantes harmoniques élémentaires. Le Matching Pursuit "Chirpé" extrait les variations de fréquence instantanée en tirant parti d'une analyse fine des crêtes du dictionnaire de Gabor multi-échelle. Les approximations fournies par le Matching Pursuit Haute-résolution préservent les transitoires des signaux analysés, en imposant des contraintes de résolution temporelle. Nous accélérons ces techniques en employant des sous-dictionnaires de maxima locaux. Notre travail est consacré dans un second temps à l'étude de l'"Analyse Discriminante Non-linéaire". Pour classifier des signaux, les méthodes d'Analyse Discriminante Linéaire réduisent la dimension en les projetant sur un sous-espace pré-déterminé. Une projection adaptative, en fonction du signal analysé, extrait de celui-ci des caractéristiques qui lui sont propres. Celles-ci le distinguent et permettent de le classifier efficacement. Nous déterminons la stratégie optimale de projection adaptative pour la classification de bruits gaussiens colorés. Afin de classifier des transitoires, nous explorons enfin une méthode utilisant les maxima du module de la transformée en ondelettes et des arbres de décision. Cette approche permet de surmonter les difficultés liées à l'invariance par translation des signaux à classifier.
2

Localisation de sources par méthodes à haute résolution et par analyse parcimonieuse

Ma, Hua 24 June 2011 (has links) (PDF)
Cette thèse a pour but d'estimer la position et la puissance de sources sonores ponctuelles à l'aide d'une antenne acoustique. Nous nous intéressons d'abord à la directivité des antennes acoustiques pondérées. On montre qu'une telle antenne, appelée antenne conventionnelle, même si elle est à directivité optimale, est inutilisable pour localiser plusieurs sources sonores. Des traitements adaptatifs d'antenne sont donc exigés et les méthodes dites à haute résolution sont introduites. Elles sont basées sur l'estimation de la matrice de covariance des signaux issus des capteurs et présentent l'avantage de s'affranchir des limitations naturelles du traitement d'antenne conventionnel. Cependant, ces méthodes nécessitent l'emploi d'un modèle de propagation et sont donc par nature peu robustes aux erreurs de modèle, ce qui peut être parfois un handicap et dégrader leurs performances. Par la suite, nous présentons une nouvelle méthode de séparation des sources utilisant une représentation parcimonieuse des signaux. Nous montrons que ses performances sont meilleures que celles obtenues par les méthodes à haute résolution et notre algorithme parvient à une bonne résolution spatiale, même sous des conditions défavorables. Cette méthode est appliquée aux sources corrélées et décorrélées, à bande étroite et à large bande, en champ proche et en champ lointain. Pour finir, nous présentons des méthodes pour estimer la puissance des sources sonores. Des simulations numériques et des expérimentations en chambre anéchoïque sont effectuées afin de vérifier et de valider les analyses et les résultats théoriques
3

Études de Modèles Variationnels et Apprentissage de Dictionnaires

Zeng, Tieyong 09 October 2007 (has links) (PDF)
Ce mémoire porte sur l'utilisation de dictionnaires en analyse et restauration d'images numériques. Nous nous sommes intéressés aux différents aspects mathématiques et pratiques de ce genre de méthodes: modélisation, analyse de propriétés de la solution d'un modèle, analyse numérique, apprentissage du dictionnaire et expérimentation. Après le Chapitre 1, qui retrace les étapes les plus significatives de ce domaine, nous présentons dans le Chapitre 2 notre implémentation et les résultats que nous avons obtenus avec le modèle consistant à résoudre \begin{equation}\label{tv-inf} \left\{\begin{array}{l} \min_{w} TV(w), \\ \mbox{sous les contraintes } |\PS{w-v}{\psi}|\leq \tau, \forall \psi \in \DD \end{array}\right. \end{equation} pour $v\in\RRN$, une donnée initiale, $\tau>0$, $TV(\cdot)$ la variation totale et un dictionnaire {\em invariant par translation} $\DD$. Le dictionnaire est, en effet, construit comme toutes les translations d'un ensemble $\FF$ d'éléments de $\RRN$ (des caractéristiques ou des patchs). L'implémentation de ce modèle avec ce genre de dictionnaire est nouvelle. (Les auteurs avaient jusque là considéré des dictionnaires de paquets d'ondelettes ou de curvelets.) La souplesse de la construction du dictionnaire a permis de conduire plusieurs expériences dont les enseignements sont rapportés dans les Chapitre 2 et 3. Les expériences du Chapitre 2 confirment que, pour obtenir de bons résultats en débruitage avec le modèle ci-dessus, le dictionnaire doit bien représenter la courbure des textures. Ainsi, lorsque l'on utilise un dictionnaire de Gabor, il vaut mieux utiliser des filtres de Gabor dont le support est isotrope (ou presque isotrope). En effet, pour représenter la courbure d'une texture ayant une fréquence donnée et vivant sur un support $\Omega$, il faut que le support, en espace, des filtres de Gabor permette un ``pavage'' avec peu d'éléments du support $\Omega$. Dans la mesure o\`{u}, pour une classe générale d'images, le support $\Omega$ est indépendant de la fréquence de la texture, le plus raisonnable est bien de choisir des filtres de Gabor dont le support est isotrope. Ceci est un argument fort en faveur des paquets d'ondelettes, qui permettent en plus d'avoir plusieurs tailles de supports en espace (pour une fréquence donnée) et pour lesquelles \eqref{tv-inf} peut être résolu rapidement. Dans le Chapitre 3 nous présentons des expériences dans lesquels le dictionnaire contient les courbures de formes connues (des lettres). Le terme d'attache aux données du modèle \eqref{tv-inf} autorise l'apparition dans le résidu $w^*-v$ de toutes les structures, sauf des formes ayant servi à construire le dictionnaire. Ainsi, on s'attend à ce que les forment restent dans le résultat $w^*$ et que les autres structures en soient absente. Nos expériences portent sur un problème de séparation de sources et confirment cette impression. L'image de départ contient des lettres (connues) sur un fond très structuré (une image). Nous montrons qu'il est possible, avec \eqref{tv-inf}, d'obtenir une séparation raisonnable de ces structures. Enfin ce travail met bien en évidence que le dictionnaire $\DD$ doit contenir la {\em courbure} des éléments que l'on cherche à préserver et non pas les éléments eux-mêmes, comme on pourrait le penser na\"{\i}vement. Le Chapitre 4 présente un travail dans lequel nous avons cherché à faire collaborer la méthode K-SVD avec le modèle \eqref{tv-inf}. Notre idée de départ est d'utiliser le fait que quelques itérations de l'algorithme qu'il utilise pour résoudre \eqref{tv-inf} permettent de faire réapparaître des structures absentes de l'image servant à l'initialisation de l'algorithme (et dont la courbure est présente dans le dictionnaire). Nous appliquons donc quelques une de ces itérations au résultat de K-SVD et retrouvons bien les textures perdues. Ceci permet un gain visuel et en PSNR. Dans le Chapitre 5, nous exposons un schéma numérique pour résoudre une variante du Basis Pursuit. Celle-ci consiste à appliquer un algorithme du point proximal à ce modèle. L'intérêt est de transformer un problème convexe non-différentiable en une suite (convergeant rapidement) de problèmes convexes très réguliers. Nous montrons la convergence théorique de l'algorithme. Celle-ci est confirmée par l'expérience. Cet algorithme permet d'améliorer considérablement la qualité (en terme de parcimonie) de la solution par rapport à l'état de l'art concernant la résolution pratique du Basis Pursuit. Nous nous espérons que cet algorithme devrait avoir un impact conséquent dans ce domaine en rapide développement. Dans le Chapitre 6, nous adapte aux cas d'un modèle variationnel, dont le terme régularisant est celui du Basis Pursuit et dont le terme d'attache aux données est celui du modèle \eqref{tv-inf}, un résultat de D. Donoho (voir [55]). Ce résultat montre que, sous une condition liant le dictionnaire définissant le terme régularisant au dictionnaire définissant le terme d'attache aux données, il est possible d'étendre les résultats de D. Donoho aux modèles qui nous intéressent dans ce chapitre. Le résultat obtenu dit que, si la donnée initiale est très parcimonieuse, la solution du modèle est proche de sa décomposition la plus parcimonieuse. Ceci garantie la stabilité du modèle dans ce cadre et fait un lien entre régularisation $l^1$ et $l^0$, pour ce type d'attache aux données. Le Chapitre 7 contient l'étude d'une variante du Matching Pursuit. Dans cette variante, nous proposons de réduire le produit scalaire avec l'élément le mieux corrélé au résidu, avant de modifier le résidu. Ceci pour une fonction de seuillage général. En utilisant des propriétés simples de ces fonctions de seuillage, nons montrons que l'algorithme ainsi obtenu converge vers la projection orthogonale de la donnée sur l'espace linéaire engendré par le dictionnaire (le tout modulo une approximation quantifiée par les caractéristiques de la fonction de seuillage). Enfin, sous une hypothèse faible sur la fonction de seuillage (par exemple le seuillage dur la satisfait), cet algorithme converge en un temps fini que l'on peut déduire des propriétés de la fonction de seuillage. Typiquement, cet algorithme peut-être utilisé pour faire les projections orthogonales dans l'algorithme ``Orthogonal Matching Pursuit''. Ceci nous n'avons pas encore été fait. Le Chapitre 8 explore enfin la problématique de l'apprentissage de dictionnaires. Le point de vue développé est de considerer cette problématique comme un problème d'estimation de paramètres dans une famille de modèles génératifs additifs. L'introduction de switchs aléatoires de Bernoulli activant ou désactivant chaque élément d'un dictionnaire invariant par translation à estimer en permet l'identification dans des conditions assez générales en particulier dans le cas o\`{u} les coefficients sont gaussiens. En utilisant une technique d'EM variationel et d'approximation de la loi a posteriori par champ moyen, nous dérivons d'un principe d'estimation par maximum de vraisemblance un nouvel algorithme effectif d'apprentissage de dictionaire que l'on peut apparenter pour certains aspects à l'algorithme K-SVD. Les résultats expérimentaux sur données synthétiques illustrent la possibilité d'une identification correcte d'un dictionaire source et de plusieurs applications en décomposition d'images et en débruitage.
4

Compartimentation et transfert de contaminants dans les milieux souterrains : interaction entre transport physique, réactivité chimique et activité biologique / Compartimentalization and contaminant transfer in underground media : interaction between transport processes, chemical reactivity and biological activity

Babey, Tristan 08 December 2016 (has links)
Classiquement le transfert des contaminants dans le milieu souterrain est modélisé par un couplage des processus de transport physiques (écoulements contrôlés par les structures géologiques poreuses) et des processus de dégradation ou d'immobilisation chimiques et biologiques. Tant sur les structures géologiques que sur la chimie et la physique, les modèles sont de plus en plus détaillés mais de plus en plus difficiles à calibrer sur des données toujours très parcellaires. Dans cette thèse, nous développons une approche alternative basée sur des modèles parcimonieux sous la forme d’un simple graphe de compartiments interconnectés généralisant les modèles d’interaction de continuums (MINC) ou de transfert à taux multiples (MRMT). Nous montrons que ces modèles sont particulièrement adaptés aux milieux dans lesquels la diffusion de solutés occupe un rôle prépondérant par rapport à l’advection, tels les sols ou les aquifères très hétérogènes comme les aquifères fracturés. L'homogénéisation induite par la diffusion réduit les gradients de concentration, accélère les mélanges entre espèces et fait de la distribution des temps de résidence un excellent proxy de la réactivité. En effet, ces structures simplifiées reconstituées à partir d’informations de temps de résidence se révèlent également pertinentes pour des réactions chimiques non linéaires (e.g. sorption, précipitation/dissolution). Nous montrons finalement comment ces modèles peuvent être adaptés automatiquement à des observations d’essais de traceurs ou de réactions de biodégradation. Ces approches parcimonieuses présentent de nombreux avantages dont la simplicité de développement et de mise en œuvre. Elles permettent d’identifier les déterminants majeurs des échanges entre zones advectives et diffusives ou entre zones inertes et réactives, et d’extrapoler des processus de réactivité à des échelles plus larges. L’utilisation de données de fractionnement isotopique est proposée pour améliorer la dissociation entre l’effet des structures et de la réactivité. / Modelling of contaminant transfer in the subsurface classically relies on a detailed representation of transport processes (groundwater flow controlled by geological structures) coupled to chemical and biological reactivity (immobilization, degradation). Calibration of such detailed models is however often limited by the small amount of available data on the subsurface structures and characteristics. In this thesis, we develop an alternative approach of parsimonious models based on simple graphs of interconnected compartments, taken as generalized multiple interacting continua (MINC) and multiple rate mass transfer (MRMT). We show that this approach is well suited to systems where diffusion-like processes are dominant over advection, like for instance in soils or highly heterogeneous aquifers like fractured aquifers. Homogenization induced by diffusion reduces concentration gradients, speeds up mixing between chemical species and makes residence time distributions excellent proxies for reactivity. Indeed, simplified structures calibrated solely from transit time information prove to provide consistent estimations of non-linear reactivity (e.g. sorption and precipitation/dissolution). Finally, we show how these models can be applied to tracer observations and to biodegradation reactions. Two important advantages of these parsimonious approaches are their facility of development and application. They help identifying the major controls of exchanges between advective and diffusive zones or between inert and reactive zones. They are also amenable to extrapolate reactive processes at larger scale. The use of isotopic fractionation data is proposed to help discriminating between structure-induced effects and reactivity.
5

Sparse coding for machine learning, image processing and computer vision / Représentations parcimonieuses en apprentissage statistique, traitement d’image et vision par ordinateur

Mairal, Julien 30 November 2010 (has links)
Nous étudions dans cette thèse une représentation particulière de signaux fondée sur une méthode d’apprentissage statistique, qui consiste à modéliser des données comme combinaisons linéaires de quelques éléments d’un dictionnaire appris. Ceci peut être vu comme une extension du cadre classique des ondelettes, dont le but est de construire de tels dictionnaires (souvent des bases orthonormales) qui sont adaptés aux signaux naturels. Un succès important de cette approche a été sa capacité à modéliser des imagettes, et la performance des méthodes de débruitage d’images fondées sur elle. Nous traitons plusieurs questions ouvertes, qui sont reliées à ce cadre : Comment apprendre efficacement un dictionnaire ? Comment enrichir ce modèle en ajoutant une structure sous-jacente au dictionnaire ? Est-il possible d’améliorer les méthodes actuelles de traitement d’image fondées sur cette approche ? Comment doit-on apprendre le dictionnaire lorsque celui-ci est utilisé pour une tâche autre que la reconstruction de signaux ? Y a-t-il des applications intéressantes de cette méthode en vision par ordinateur ? Nous répondons à ces questions, avec un point de vue multidisciplinaire, en empruntant des outils d’apprentissage statistique, d’optimisation convexe et stochastique, de traitement des signaux et des images, de vison par ordinateur, mais aussi d'optimisation sur des graphes. / We study in this thesis a particular machine learning approach to represent signals that that consists of modelling data as linear combinations of a few elements from a learned dictionary. It can be viewed as an extension of the classical wavelet framework, whose goal is to design such dictionaries (often orthonormal basis) that are adapted to natural signals. An important success of dictionary learning methods has been their ability to model natural image patches and the performance of image denoising algorithms that it has yielded. We address several open questions related to this framework: How to efficiently optimize the dictionary? How can the model be enriched by adding a structure to the dictionary? Can current image processing tools based on this method be further improved? How should one learn the dictionary when it is used for a different task than signal reconstruction? How can it be used for solving computer vision problems? We answer these questions with a multidisciplinarity approach, using tools from statistical machine learning, convex and stochastic optimization, image and signal processing, computer vision, but also optimization on graphs.
6

Analyse d'images pour une recherche d'images basée contenu dans le domaine transformé. / Image analysis for content based image retrieval in transform domain

Bai, Cong 21 February 2013 (has links)
Cette thèse s’inscrit dans la recherche d’images basée sur leur contenu. La recherche opère sur des images eprésentéesdans un domaine transformé et où sont construits directement les vecteurs de caractéristiques ou indices. Deux types detransformations sont explorés : la transformée en cosinus discrète ou Discrete Cosine Transform (DCT) et la transforméen ondelettes discrète ou Discrete Wavelet Transform (DWT), utilisés dans les normes de compression JPEG et JPEG2000. Basés sur les propriétés des coefficients de la transformation, différents vecteurs de caractéristiquessont proposés. Ces vecteurs sont mis en oeuvre dans la reconnaissance de visages et de textures couleur.Dans le domaine DCT, sont proposés quatre types de vecteurs de caractéristiques dénommés «patterns» : Zigzag-Pattern,Sum-Pattern, Texture-Pattern et Color-Pattern. Le premier type est l’amélioration d’une approche existante. Les trois derniers intègrent la capacité de compactage des coefficients DCT, sachant que certains coefficients représentent une information de directionnalité. L’histogramme de ces vecteurs est retenu comme descripteur de l’image. Pour une réduction de la dimension du descripteur lors de la construction de l’histogramme il est défini, soit une adjacence sur des patterns proches puis leur fusion, soit une sélection des patterns les plus fréquents. Ces approches sont évaluées sur des bases de données d’images de visages ou de textures couramment utilisées. Dans le domaine DWT, deux types d’approches sont proposés. Dans le premier, un vecteur-couleur et un vecteur–texture multirésolution sont élaborés. Cette approche se classe dans le cadre d’une caractérisation séparée de la couleur et de la texture. La seconde approche se situe dans le contexte d’une caractérisation conjointe de la couleur et de la texture. Comme précédemment, l’histogramme des vecteurs est choisi comme descripteur en utilisant l’algorithme K-means pour construire l’histogramme à partir de deux méthodes. La première est le procédé classique de regroupement des vecteurs par partition. La seconde est un histogramme basé sur une représentation parcimonieuse dans laquelle la valeur des bins représente le poids total des vecteurs de base de la représentation. / This thesis comes within content-based image retrieval for images by constructing feature vectors directly fromtransform domain. In particular, two kinds of transforms are concerned: Discrete Cosine Transform (DCT) andDiscrete Wavelet Transform (DWT), which are used in JPEG and JPEG2000 compression standards. Based onthe properties of transform coefficients, various feature vectors in DCT domain and DWT domain are proposedand applied in face recognition and color texture retrieval. The thesis proposes four kinds of feature vectors in DCTdomain: Zigzag-Pattern, Sum-Pattern, Texture-Pattern and Color-Pattern. The first one is an improved method based onan existing approach. The last three ones are based on the capability of DCT coefficients for compacting energy and thefact that some coefficients hold the directional information of images. The histogram of these patterns is chosen as descriptor of images. While constructing the histogram, with the objective to reduce the dimension of the descriptor, either adjacent patterns are defined and merged or a selection of the more frequent patterns is done. These approaches are evaluated on widely used face databases and texture databases. In the aspect of DWT domain, two kinds of approaches for color texture retrieval are proposed. In the first one, color-vector and multiresolution texture-vector are constructed, which categorize this approach into the context of extracting color and texture features separately. In contrast, the second approachis in the context of extracting color and texture features jointly: multiresolution feature vectors are extracted from luminance and chrominance components of color texture. Histogram of vectors is again chosen as descriptor and using k-means algorithm to divide feature vectors into partitions corresponding to the bins of histogram. For histogram generation, two methods are used. The first one is the classical method, in which the number of vectors that fall into the corresponding partition is counted. The second one is the proposition of a sparse representation based histogram in which a bin value represents the total weight of corresponding basis vector in the sparse representation.
7

Représentations parcimonieuses et apprentissage de dictionnaires pour la classification et le clustering de séries temporelles / Time warp invariant sparse coding and dictionary learning for time series classification and clustering

Varasteh Yazdi, Saeed 15 November 2018 (has links)
L'apprentissage de dictionnaires à partir de données temporelles est un problème fondamental pour l’extraction de caractéristiques temporelles latentes, la révélation de primitives saillantes et la représentation de données temporelles complexes. Cette thèse porte sur l’apprentissage de dictionnaires pour la représentation parcimonieuse de séries temporelles. On s’intéresse à l’apprentissage de représentations pour la reconstruction, la classification et le clustering de séries temporelles sous des transformations de distortions temporelles. Nous proposons de nouveaux modèles invariants aux distortions temporelles.La première partie du travail porte sur l’apprentissage de dictionnaire pour des tâches de reconstruction et de classification de séries temporelles. Nous avons proposé un modèle TWI-OMP (Time-Warp Invariant Orthogonal Matching Pursuit) invariant aux distorsions temporelles, basé sur un opérateur de maximisation du cosinus entre des séries temporelles. Nous avons ensuite introduit le concept d’atomes jumelés (sibling atomes) et avons proposé une approche d’apprentissage de dictionnaires TWI-kSVD étendant la méthode kSVD à des séries temporelles.Dans la seconde partie du travail, nous nous sommes intéressés à l’apprentissage de dictionnaires pour le clustering de séries temporelles. Nous avons proposé une formalisation du problème et une solution TWI-DLCLUST par descente de gradient.Les modèles proposés sont évalués au travers plusieurs jeux de données publiques et réelles puis comparés aux approches majeures de l’état de l’art. Les expériences conduites et les résultats obtenus montrent l’intérêt des modèles d’apprentissage de représentations proposés pour la classification et le clustering de séries temporelles. / Learning dictionary for sparse representing time series is an important issue to extract latent temporal features, reveal salient primitives and sparsely represent complex temporal data. This thesis addresses the sparse coding and dictionary learning problem for time series classification and clustering under time warp. For that, we propose a time warp invariant sparse coding and dictionary learning framework where both input samples and atoms define time series of different lengths that involve varying delays.In the first part, we formalize an L0 sparse coding problem and propose a time warp invariant orthogonal matching pursuit based on a new cosine maximization time warp operator. For the dictionary learning stage, a non linear time warp invariant kSVD (TWI-kSVD) is proposed. Thanks to a rotation transformation between each atom and its sibling atoms, a singular value decomposition is used to jointly approximate the coefficients and update the dictionary, similar to the standard kSVD. In the second part, a time warp invariant dictionary learning for time series clustering is formalized and a gradient descent solution is proposed.The proposed methods are confronted to major shift invariant, convolved and kernel dictionary learning methods on several public and real temporal data. The conducted experiments show the potential of the proposed frameworks to efficiently sparse represent, classify and cluster time series under time warp.
8

Algorithms for super-resolution of images based on sparse representation and manifolds / Algorithmes de super-résolution pour des images basées sur représentation parcimonieuse et variété

Ferreira, Júlio César 06 July 2016 (has links)
La ''super-résolution'' est définie comme une classe de techniques qui améliorent la résolution spatiale d’images. Les méthodes de super-résolution peuvent être subdivisés en méthodes à partir d’une seule image et à partir de multiple images. Cette thèse porte sur le développement d’algorithmes basés sur des théories mathématiques pour résoudre des problèmes de super-résolution à partir d’une seule image. En effet, pour estimer un’image de sortie, nous adoptons une approche mixte : nous utilisons soit un dictionnaire de « patches » avec des contraintes de parcimonie (typique des méthodes basées sur l’apprentissage) soit des termes régularisation (typiques des méthodes par reconstruction). Bien que les méthodes existantes donnent déjà de bons résultats, ils ne prennent pas en compte la géométrie des données dans les différentes tâches. Par exemple, pour régulariser la solution, pour partitionner les données (les données sont souvent partitionnées avec des algorithmes qui utilisent la distance euclidienne comme mesure de dissimilitude), ou pour apprendre des dictionnaires (ils sont souvent appris en utilisant PCA ou K-SVD). Ainsi, les méthodes de l’état de l’art présentent encore certaines limites. Dans ce travail, nous avons proposé trois nouvelles méthodes pour dépasser ces limites. Tout d’abord, nous avons développé SE-ASDS (un terme de régularisation basé sur le tenseur de structure) afin d’améliorer la netteté des bords. SE-ASDS obtient des résultats bien meilleurs que ceux de nombreux algorithmes de l’état de l’art. Ensuite, nous avons proposé les algorithmes AGNN et GOC pour déterminer un sous-ensemble local de données d’apprentissage pour la reconstruction d’un certain échantillon d’entrée, où l’on prend en compte la géométrie sous-jacente des données. Les méthodes AGNN et GOC surclassent dans la majorité des cas la classification spectrale, le partitionnement de données de type « soft », et la sélection de sous-ensembles basée sur la distance géodésique. Ensuite, nous avons proposé aSOB, une stratégie qui prend en compte la géométrie des données et la taille du dictionnaire. La stratégie aSOB surpasse les méthodes PCA et PGA. Enfin, nous avons combiné tous nos méthodes dans un algorithme unique, appelé G2SR. Notre algorithme montre de meilleurs résultats visuels et quantitatifs par rapport aux autres méthodes de l’état de l’art. / Image super-resolution is defined as a class of techniques that enhance the spatial resolution of images. Super-resolution methods can be subdivided in single and multi image methods. This thesis focuses on developing algorithms based on mathematical theories for single image super-resolution problems. Indeed, in order to estimate an output image, we adopt a mixed approach: i.e., we use both a dictionary of patches with sparsity constraints (typical of learning-based methods) and regularization terms (typical of reconstruction-based methods). Although the existing methods already perform well, they do not take into account the geometry of the data to: regularize the solution, cluster data samples (samples are often clustered using algorithms with the Euclidean distance as a dissimilarity metric), learn dictionaries (they are often learned using PCA or K-SVD). Thus, state-of-the-art methods still suffer from shortcomings. In this work, we proposed three new methods to overcome these deficiencies. First, we developed SE-ASDS (a structure tensor based regularization term) in order to improve the sharpness of edges. SE-ASDS achieves much better results than many state-of-the-art algorithms. Then, we proposed AGNN and GOC algorithms for determining a local subset of training samples from which a good local model can be computed for reconstructing a given input test sample, where we take into account the underlying geometry of the data. AGNN and GOC methods outperform spectral clustering, soft clustering, and geodesic distance based subset selection in most settings. Next, we proposed aSOB strategy which takes into account the geometry of the data and the dictionary size. The aSOB strategy outperforms both PCA and PGA methods. Finally, we combine all our methods in a unique algorithm, named G2SR. Our proposed G2SR algorithm shows better visual and quantitative results when compared to the results of state-of-the-art methods.
9

Localisation de sources par méthodes à haute résolution et par analyse parcimonieuse / Source localization by high-resolution methods and parsimony analysis

Ma, Hua 24 June 2011 (has links)
Cette thèse a pour but d‘estimer la position et la puissance de sources sonores ponctuelles à l'aide d‘une antenne acoustique. Nous nous intéressons d‘abord à la directivité des antennes acoustiques pondérées. On montre qu‘une telle antenne, appelée antenne conventionnelle, même si elle est à directivité optimale, est inutilisable pour localiser plusieurs sources sonores. Des traitements adaptatifs d‘antenne sont donc exigés et les méthodes dites à haute résolution sont introduites. Elles sont basées sur l‘estimation de la matrice de covariance des signaux issus des capteurs et présentent l‘avantage de s‘affranchir des limitations naturelles du traitement d‘antenne conventionnel. Cependant, ces méthodes nécessitent l‘emploi d‘un modèle de propagation et sont donc par nature peu robustes aux erreurs de modèle, ce qui peut être parfois un handicap et dégrader leurs performances. Par la suite, nous présentons une nouvelle méthode de séparation des sources utilisant une représentation parcimonieuse des signaux. Nous montrons que ses performances sont meilleures que celles obtenues par les méthodes à haute résolution et notre algorithme parvient à une bonne résolution spatiale, même sous des conditions défavorables. Cette méthode est appliquée aux sources corrélées et décorrélées, à bande étroite et à large bande, en champ proche et en champ lointain. Pour finir, nous présentons des méthodes pour estimer la puissance des sources sonores. Des simulations numériques et des expérimentations en chambre anéchoïque sont effectuées afin de vérifier et de valider les analyses et les résultats théoriques / This thesis concerns the problem of sensor array source localization and power estimation by an acoustical array of sensors. In first the acoustical array directivity is treated. It is shown that such array is not useful for the localization of multiple sources. Adaptive arrays and high resolution methods are then introduced. They are based on the estimation of the sensor output covariance matrix and their performances overcome the natural limitations of the weighted beamforming processing. However, these methods require the use of a propagation model and are not robust to model errors. We present a new method which is an application of sparse regularization methodology to acoustical source localization using an acoustical array. Its performances are better than high-resolution methods and this method works very well in the case of correlated or uncorrelated signals, narrow band or wideband signals, near field or far field environments. Finally, a power estimation of sound sources by an acoustical array is presented. Numerical and experimental results in an anechoic room are presented showing the effectiveness of theoretical results
10

Ré-identification de personnes à partir des séquences vidéo / Person re-identification from video sequence

Ibn Khedher, Mohamed 01 July 2014 (has links)
Cette thèse s'inscrit dans le contexte de la vidéo surveillance et s'intéresse à la ré-identification de personnes dans un réseau de caméras à champs disjoints. La ré-identification consiste à déterminer si une personne quitte le champ d'une caméra et réapparait dans une autre. Elle est particulièrement difficile car l'apparence de la personne change de manière significative à cause de différents facteurs. Nous proposons d'exploiter la complémentarité de l'apparence de la personne et son style de mouvement pour la décrire d'une manière appropriée aux facteurs de complexité. C'est une nouvelle approche car la ré-identification a été traitée par des approches d'apparence. Les contributions majeures proposées concernent: la description de la personne et l'appariement des primitives. Nous étudions deux scénarios de ré-identification : simple et complexe. Dans le scénario simple, nous étudions la faisabilité de deux approches : approche biométrique basée sur la démarche et approche d'apparence fondée sur des points d'intérêt (PI) spatiaux et des primitives de couleur. Dans le scénario complexe, nous proposons de fusionner des primitives d'apparence et de mouvement. Nous décrivons le mouvement par des Pis spatio-temporels et l'apparence par des PIs spatiaux. Pour l'appariement, nous utilisons la représentation parcimonieuse comme méthode d'appariement local entre les PIs. Le schéma de fusion est fondé sur le calcul de la somme pondérée des votes des PIs et ensuite l'application de la règle de vote majoritaire. Nous proposons également une analyse d'erreurs permettant d'identifier les sources d'erreurs de notre système pour dégager les pistes d'amélioration les plus prometteuses / This thesis focuses on the problem of hu man re-identification through a network of cameras with non overlapping fields of view. Human re-identification is defined as the task of determining if a persan leaving the field of one camera reappears in another. It is particularly difficult because of persons' significant appearance change within different cameras vision fields due to various factors. In this work, we propose to exploit the complementarity of the person's appearance and style of movement that leads to a description that is more robust with respect to various complexity factors. This is a new approach for the re-identification problem that is usually treated by appearance methods only. The major contributions proposed in this work include: person's description and features matching. First we study the re-identification problem and classify it into two scenarios: simple and complex. In the simple scenario, we study the feasibility of two approaches: a biometric approach based on gait and an appearance approach based on spatial Interest Points (IPs) and color features. In the complex scenario, we propose to exploit a fusion strategy of two complementary features provided by appearance and motion descriptions. We describe motion using spatiotemporal IPs, and use the spatial IPs for describing the appearance. For feature matching, we use sparse representation as a local matching method between IPs. The fusion strategy is based on the weighted sum of matched IPs votes and then applying the rule of majority vote. Moreover, we have carried out an error analysis to identify the sources of errors in our proposed system to identify the most promising areas for improvement

Page generated in 0.1096 seconds