Return to search

Charakterisierung negativ inotroper Substanzen nach Myokardischämie

Kardialen Strukturen, wie dem koronaren oder endokardialen Endothel, dem Myokard und auch dem Perikard werden unter physiologischen und pathophysiologischen Bedingungen zunehmend autokrine oder parakrine Funktionen zugesprochen. Es ist gut belegt, dass das Herz durch Freisetzung von löslichen Mediatoren nach Myokardischämie einen entscheidenden Anteil an der postischämischen Regulation der Vasomotion hat. Allerdings weniger bekannt ist die Bedeutung einer Mediator-vermittelten kardialen Autoregulation bei postischämischen Veränderungen der Myokardkontraktilität. In dieser Arbeit wird eine neue negativ inotrope Substanz(en) (NIS) beschrieben, die nach myokardialer Ischämie aus isolierten Herzen freigesetzt wird und die an sequentiell perfundierten Herzen, die als Bioassay eingesetzt werden, einen deutlichen kardiodepressiven Effekt hervorruft. In isolierten Feld-stimulierten Rattenkardiomyozyten reduziert NIS dosisabhängig die systolische Zellverkürzung und den Ca2+-Transienten (Konfokale Laser Scan Mikroskopie). Der negativ inotrope Effekt setzt sowohl in isolierten Herzen als auch Kardiomyozyten schnell ein und ist reversibel. Katecholamine maskieren und überspielen den negativ inotropen Effekt in Abhängigkeit von der Ischämiedauer. Voltage clamp Untersuchungen auf Einzelzellebene zeigten, dass NIS den Ca2+-Einstrom Ica über die L-Typ Ca2+-Kanäle reduziert. Somit scheint NIS die Myokardkontraktilität und Zellverkürzung über eine Verminderung der intrazellulären systolischen Ca2+-Konzentrationen durch Blockade der L-Typ Ca2+-Kanäle zu reduzieren und nicht etwa über eine Ca2+-Desensitivierung. Derzeit ist noch nicht geklärt, über welchen Mechanismus NIS den Ca2+-Einstrom blockiert. Da weder die Gewebsspiegel von cGMP und cAMP noch die PKA Aktivität durch NIS moduliert werden, ist es unwahrscheinlich, dass eine Dephosphorylierung von Untereinheiten des L-Typ Ca2+-Kanals der Funktionsweise von NIS zu Grunde liegt. Die Ergebnisse legen nahe, dass NIS direkt mit dem Ca2+-Kanal interagiert, z.B. durch Bindung an ein Kanalprotein. Die chemische Struktur von NIS ist derzeit noch ungeklärt, allerdings gibt es Hinweise, dass es sich nicht um ein Protein handelt. Die Substanz(en) ist stabil, Hitze-resistent (56°) und ein dialysierbares Molekül mit einem geringen Molekulargewicht (< 0.5 kDa). Die kardiodepressorische Substanz(en) wird nicht vom Koronarendothel freigesetzt. Eine abschließende Bewertung, ob NIS durch Aggravation der kontraktilen Dysfunktion myokardschädigend oder durch Senkung des myokardialen Sauerstoffverbrauches kardioprotektiv wirkt, ist derzeit noch nicht möglich. / Autocrine and paracrine functions are increasingly being attributed under physiological and pathophysiological conditions to cardiac structures such as the coronary or endocardial endothelium, the myocardium, and the pericardium as well. Reliable evidence exists to confirm that the heart, through the release of soluble mediators after myocardial ischemia, plays a decisive role in post-ischemic regulation of vasomotion. Less well-known, however, is the significance of mediator-effected cardiac autoregulation in cases of post-ischemic changes of myocardial contractility. This study describes a new negative inotropic substance or substances, NIS, released from isolated hearts after myocardial ischemia. NIS elicits marked cardiodepressive effects on sequentially perfused hearts used as bioassays. In isolated field-stimulated rat cardiomyocytes, NIS reduces, as a function of dose, systolic cell shortening and Ca2+ transients (as detected by confocal laser-scan microscopy). The negative inotropic effect occurs quickly both in isolated hearts as well as in cardiomyocytes, and is reversible. Catecholamines counteract the negative inotropic effect, as a function of ischemia duration. Voltage-clamp investigations on the single-cell level have disclosed that NIS reduces Ca2+ inflow Ica via L-type Ca2+ channels. NIS appears to decrease myocardial contractility and cell shortening through reduction of intracellular systolic Ca2+ concentration, by blockade of L-type Ca2+ channels: and not, say, by Ca2+ desensitization. It has not yet been definitely established by which mechanism NIS blocks Ca2+ inflow. Since NIS modulates neither the tissue level of cGMP and cAMP, nor PKA activity, it is improbable that NIS acts by dephosphorization of sub-units of the L-type Ca2+ channel. The results of this study imply that NIS directly interacts with the Ca2+ channel, perhaps by binding to a channel protein. Although the chemical structure of NIS has not yet been elucidated, there are indications that it is not a protein. The substance(s) is/are stable, heat resistant (up to 56°C), and dialyzable as a molecule with low molecular weight (< 0.5 kDa). It is not yet possible to provide conclusive evaluation of whether NIS acts to damage the myocardium by aggravation of the contractile dysfunction, or whether it exerts cardioprotective action by diminishing myocardial oxygen consumption.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/14455
Date23 April 2002
CreatorsStangl, Verena
ContributorsTrappe, H.-J., Werdan, K.
PublisherHumboldt-Universität zu Berlin, Medizinische Fakultät - Universitätsklinikum Charité
Source SetsHumboldt University of Berlin
LanguageGerman
Detected LanguageEnglish
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.003 seconds