Introduction : En réadaptation, un nombre important de patients devront réapprendre certains mouvements ou ont subi des lésions entrainant des déficits sensorimoteurs. Ces évènements impliquent la mise en place de mécanismes mettant en jeu la neuroplasticité. Cette neuroplasticité est définie comme la capacité du système nerveux central à se modifier pour s’adapter aux changements internes ou externes. De plus, une majorité des patients en réadaptation souffrent de douleur dont la présence est associée à une moins bonne récupération. De récentes études ont révélé que la douleur est capable d’influencer l’état d’excitabilité du cortex moteur. Étant donné que la neuroplasticité est influencée par l’état du système, l’objectif de cette thèse a été de tester, à l’aide de deux protocoles connus pour induire une plasticité, l’influence d’une douleur expérimentale sur la plasticité corticospinale. Méthodologie : Deux expérimentations ont été réalisées. Un devis intra-sujet nécessitant que les participants prennent part à deux sessions expérimentales (Douleur, NonDouleur) a été utilisé lors de la première expérimentation. La seconde étude a quant à elle utilisé un devis inter-sujets afin que le modèle de plasticité employé (entraînement moteur) ne puisse influer sur les comparaisons entre les deux conditions expérimentales (présence (groupe Douleur) ou absence de douleur (groupe NonDouleur)). Dans chacune des expérimentations, le niveau d’excitabilité corticospinale de base de chaque participant a été mesuré via l’enregistrement des potentiels moteurs évoqués (MEP) par stimulation magnétique transcrânienne (TMS). Ensuite, selon le groupe ou la séance, la douleur expérimentale était induite via l’application topique de crème de capsaïcine au niveau de la main. Après cette application, une seconde mesure de base était effectuée afin de s’assurer que les mesures neurophysiologiques entre groupes ou sessions demeuraient comparables avant l’exposition au protocole de plasticité. Dans la première expérimentation, le protocole permettant d’induire une plasticité corticospinale consistait à appliquer une déafférentation ischémique transitoire en présence ou absence de douleur selon la session expérimentale. L’influence de la douleur sur l’inhibition interhémisphérique a également été évaluée en mesurant la période de silence ipsilatérale. Lors de la seconde expérimentation, la plasticité était induite via la réalisation, en présence ou absence de douleur, d’un entraînement moteur. Des mesures de l’excitabilité corticospinale et de l’inhibition intracorticale à courte latence ont été effectuées afin de caractériser l’influence de l’entraînement et de la douleur sur ces variables. Des analyses de variance (ANOVAs) comparant les mesures neurophysiologiques effectuées avant et après l’application des protocoles de plasticité et entre les conditions ont été réalisées pour caractériser l’effet de la douleur. Résultats : Les deux expérimentations ont démontré un effet modulateur de la douleur sur la plasticité induite par un évènement subséquent. Cette modulation s’est traduite, dans la première expérimentation, par une augmentation de l’excitabilité corticospinale des muscles proximaux plus importante lorsque la déafférentation est appliquée en présence de douleur. Dans la seconde expérimentation, la réalisation de l’entraînement moteur a induit chez le groupe contrôle une augmentation de l’excitabilité corticospinale du muscle utilisé dans la tâche au milieu de l’entraînement, avant que cette excitabilité ne revienne à son niveau de base dans la seconde moitié de l’entraînement. Les participants ayant réalisé l’entraînement en présence de douleur n’ont, en revanche, pas montré de variation de leur excitabilité corticospinale. Pourtant, ces derniers ont présenté de meilleures performances comportementales, notamment une plus grande précision lors de la réalisation de la tâche. Dans l’ensemble des expérimentations, la douleur n’a pas influencé les mesures interhémisphériques ou intracorticales. Conclusion : Les résultats présentés dans cette thèse confirment l’hypothèse formulée selon laquelle la douleur possède la capacité de moduler la plasticité se développant en réponse à un évènement tel qu’une déafférentation ou un entraînement moteur. Ces résultats supportent les observations rapportées chez les patients souffrant de douleur chronique (e.g. amputés) présentant une organisation corticale altérée. La seconde expérimentation suggère également que si la présence de douleur n’a pas d’effet délétère sur les performances motrices lors d’un entraînement, elle peut tout de même influencer les modifications de l’excitabilité corticospinale qui lui sont associées. Les résultats obtenus au terme de ce projet permettent d’éclaircir les liens qui relient douleur, système moteur et plasticité et ouvrent la voie à de nouvelles recherches qui pourront à terme amener à proposer des soins optimaux aux patients présentant de la douleur. / Introduction: In rehabilitation, a large number of patients have to relearn certain movements or have suffered injuries leading to sensorimotor deficits. These events trigger or rely on neuroplasticity mechanisms. Neuroplasticity can be defined as the ability of the central nervous system to change itself in order to adapt to internal or external changes. Moreover, a majority of rehabilitation patients suffer from pain, and the presence of pain is associated with poorer recovery. Recent studies have shown that pain can influence the state of excitability of the motor cortex. Since neuroplasticity is influenced by the state of the system, the objective of this thesis was to test the influence of experimental pain on corticospinal plasticity using two protocols known to induce plasticity. Methodology: Two experiments were realized. An intra-subject design requiring participants to take part in two experimental sessions (Pain, NoPain) was used during the first study. The second study used an inter-subject design (Pain group or NoPain group)), as the model of plasticity used (motor training) could have involve carry-over effects. In each of the studies, transcranial magnetic stimulation (TMS) was used to assess the corticospinal excitability by recording motor evoked potentials (MEP). Subsequently, depending on the group or session, experimental pain was induced via the topical application of capsaicin cream on the hand. Afterward, a second baseline measurement was performed to ensure that neurophysiological measurements between groups or sessions remained comparable prior to exposure to the plasticity protocol. In the first study, corticospinal plasticity was induced by applying transient ischemic deafferentation in the presence or absence of pain. The influence of pain on interhemispheric inhibition was also assessed by measuring the ipsilateral silent period. In the second study, corticospinal plasticity was induced by performing a motor training, in the presence or absence of pain. Measurements of corticospinal excitability and short-latency intracortical inhibition were performed to characterize the influence of training and pain on these variables. Analyzes of variance (ANOVAs) were performed on the neurophysiological variables to assess the effect of the plasticity protocols (before vs. after) and the effect of pain (inter-condition or inter-group comparison). Results: Both experiments demonstrated a modulating effect of pain on the plasticity induced by a subsequent event. In the first study, a greater increase in the corticospinal excitability of the proximal muscles was observed when the deafferentation was applied in the presence of pain. In the second study, the motor training induced an increase in the corticospinal excitability of the muscle used in the task at mid-training in the NoPain group, but excitability returned to baseline level before the end of the training. However participants who performed training in the presence of pain did not show any significant change in their corticospinal excitability throughout the motor task. Importantly, participants performing the task in the presence of pain presented a better behavioral performance, including a greater accuracy when performing the task. In all experiments, pain did not influence interhemispheric or intracortical measures. Conclusion: The results presented in this thesis confirm the hypothesis that pain has the ability to modulate plasticity occurring in response to an event such as deafferentation or motor training. These results support findings obtained in patients with chronic pain (e.g. amputees) who show altered cortical organization. Results from the second study also suggest that if the presence of pain has no deleterious effect on motor performance during training, it may still influence the changes in corticospinal excitability associated with it. Overall the results presented in this thesis provide new insights into the links between pain, motor system and plasticity.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/27824 |
Date | 24 April 2018 |
Creators | Mavromatis, Nicolas |
Contributors | Mercier, Catherine |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | thèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xvii, 157 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0054 seconds