Return to search

Employing Multiple Kernel Support Vector Machines for Counterfeit Banknote Recognition

Finding an efficient method to detect counterfeit banknotes is imperative. In this study, we propose multiple kernel weighted support vector machine for counterfeit banknote recognition. A variation of SVM in optimizing false alarm rate, called FARSVM, is proposed which provide minimized false negative rate and false positive rate. Each banknote is divided into m ¡Ñ n partitions, and each partition comes with its own kernels. The optimal weight with each kernel matrix in the combination is obtained through the semidefinite programming (SDP) learning method. The amount of time and space required by the original SDP is very demanding. We focus on this framework and adopt two strategies to reduce the time and space requirements. The first strategy is to assume the non-negativity of kernel weights, and the second strategy is to set the sum of weights equal to 1. Experimental results show that regions with zero kernel weights are easy to imitate with today¡¦s digital imaging technology, and regions with nonzero kernel weights are difficult to imitate. In addition, these results show that the proposed approach outperforms single kernel SVM and standard SVM with SDP on Taiwanese banknotes.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0729108-172006
Date29 July 2008
CreatorsSu, Wen-pin
ContributorsChen-Sen Ouyang, Chih-Hung Wu, Shie-Jue Lee
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0729108-172006
Rightsunrestricted, Copyright information available at source archive

Page generated in 0.002 seconds