Spelling suggestions: "subject:"cultiple kernel learning"" "subject:"bmultiple kernel learning""
1 |
Scale space feature selection with Multiple kernel learning and its application to oil sand image analysisNilufar, Sharmin Unknown Date
No description available.
|
2 |
Multiple Kernel Learning with Many KernelsAfkanpour, Arash Unknown Date
No description available.
|
3 |
A Multiple-Kernel Support Vector Regression Approach for Stock Market Price ForecastingHuang, Chi-wei 05 August 2009 (has links)
Support vector regression has been applied to stock market forecasting problems. However, it is usually needed to tune manually the hyperparameters of the kernel functions. Multiple-kernel learning was developed to deal with this problem, by which the kernel matrix weights and Lagrange multipliers can be simultaneously derived through semidefinite programming. However, the amount of time and space required is very demanding. We develop a two-stage multiple-kernel learning algorithm by incorporating sequential minimal optimization and the gradient projection method.
By this algorithm, advantages from different hyperparameter settings can be combined and overall system performance can be improved. Besides, the user need not specify the hyperparameter settings in advance, and trial-and-error for determining appropriate hyperparameter settings can then be avoided. Experimental results, obtained by running on datasets taken from Taiwan Capitalization Weighted Stock Index, show that our method performs better than other methods.
|
4 |
A Classification Framework for Imbalanced DataPhoungphol, Piyaphol 18 December 2013 (has links)
As information technology advances, the demands for developing a reliable and highly accurate predictive model from many domains are increasing. Traditional classification algorithms can be limited in their performance on highly imbalanced data sets. In this dissertation, we study two common problems when training data is imbalanced, and propose effective algorithms to solve them.
Firstly, we investigate the problem in building a multi-class classification model from imbalanced class distribution. We develop an effective technique to improve the performance of the model by formulating the problem as a multi-class SVM with an objective to maximize G-mean value. A ramp loss function is used to simplify and solve the problem. Experimental results on multiple real-world datasets confirm that our new method can effectively solve the multi-class classification problem when the datasets are highly imbalanced.
Secondly, we explore the problem in learning a global classification model from distributed data sources with privacy constraints. In this problem, not only data sources have different class distributions but combining data into one central data is also prohibited. We propose a privacy-preserving framework for building a global SVM from distributed data sources. Our new framework avoid constructing a global kernel matrix by mapping non-linear inputs to a linear feature space and then solve a distributed linear SVM from these virtual points. Our method can solve both imbalance and privacy problems while achieving the same level of accuracy as regular SVM.
Finally, we extend our framework to handle high-dimensional data by utilizing Generalized Multiple Kernel Learning to select a sparse combination of features and kernels. This new model produces a smaller set of features, but yields much higher accuracy.
|
5 |
Analysis and Visualization of the Two-Dimensional Blood Flow Velocity Field from VideosJun, Yang January 2015 (has links)
We estimate the velocity field of the blood flow in a human face from videos. Our approach first performs spatial preprocessing to improve the signal-to-noise ratio (SNR) and the computational efficiency. The discrete Fourier transform (DFT) and a temporal band-pass filter are then applied to extract the frequency corresponding to the subjects heart rate. We propose multiple kernel based k-NN classification for removing the noise positions from the resulting phase and amplitude maps. The 2D blood flow field is then estimated from the relative phase shift between the pixels. We evaluate our approach about segmentation as well as velocity field on real and synthetic face videos. Our method produces the recall and precision as well as a velocity field with an angular error and magnitude error on the average.
|
6 |
Employing Multiple Kernel Support Vector Machines for Counterfeit Banknote RecognitionSu, Wen-pin 29 July 2008 (has links)
Finding an efficient method to detect counterfeit banknotes is imperative. In this study, we propose multiple kernel weighted support vector machine for counterfeit banknote recognition. A variation of SVM in optimizing false alarm rate, called FARSVM, is proposed which provide minimized false negative rate and false positive rate. Each banknote is divided into m ¡Ñ n partitions, and each partition comes with its own kernels. The optimal weight with each kernel matrix in the combination is obtained through the semidefinite programming (SDP) learning method. The amount of time and space required by the original SDP is very demanding. We focus on this framework and adopt two strategies to reduce the time and space requirements. The first strategy is to assume the non-negativity of kernel weights, and the second strategy is to set the sum of weights equal to 1. Experimental results show that regions with zero kernel weights are easy to imitate with today¡¦s digital imaging technology, and regions with nonzero kernel weights are difficult to imitate. In addition, these results show that the proposed approach outperforms single kernel SVM and standard SVM with SDP on Taiwanese banknotes.
|
7 |
Fusion of Evolution Constructed Features for Computer VisionPrice, Stanton Robert 04 May 2018 (has links)
In this dissertation, image feature extraction quality is enhanced through the introduction of two feature learning techniques and, subsequently, feature-level fusion strategies are presented that improve classification performance. Two image/signal processing techniques are defined for pre-conditioning image data such that the discriminatory information is highlighted for improved feature extraction. The first approach, improved Evolution-COnstructed features, employs a modified genetic algorithm to learn a series of image transforms, specific to a given feature descriptor, for enhanced feature extraction. The second method, Genetic prOgramming Optimal Feature Descriptor (GOOFeD), is a genetic programming-based approach to learning the transformations of the data for feature extraction. GOOFeD offers a very rich and expressive solution space due to is ability to represent highly complex compositions of image transforms through binary, unary, and/or the combination of the two, operators. Regardless of the two techniques employed, the goal of each is to learn a composition of image transforms from training data to present a given feature descriptor with the best opportunity to extract its information for the application at hand. Next, feature-level fusion via multiple kernel learning (MKL) is utilized to better combine the features extracted and, ultimately, improve classification accuracy performance. MKL is advanced through the introduction of six new indices for kernel weight assignment. Five of the indices are measured directly from the kernel matrix proximity values, making them highly efficient to compute. The calculation of the sixth index is performed explicitly on distributions in the reproducing kernel Hilbert space. The proposed techniques are applied to an automatic buried explosive hazard detection application and significant results are achieved.
|
8 |
Discriminative object categorization with external semantic knowledgeHwang, Sung Ju 25 September 2013 (has links)
Visual object category recognition is one of the most challenging problems in computer vision. Even assuming that we can obtain a near-perfect instance level representation with the advances in visual input devices and low-level vision techniques, object categorization still remains as a difficult problem because it requires drawing boundaries between instances in a continuous world, where the boundaries are solely defined by human conceptualization. Object categorization is essentially a perceptual process that takes place in a human-defined semantic space. In this semantic space, the categories reside not in isolation, but in relation to others. Some categories are similar, grouped, or co-occur, and some are not. However, despite this semantic nature of object categorization, most of the today's automatic visual category recognition systems rely only on the category labels for training discriminative recognition with statistical machine learning techniques. In many cases, this could result in the recognition model being misled into learning incorrect associations between visual features and the semantic labels, from essentially overfitting to training set biases. This limits the model's prediction power when new test instances are given. Using semantic knowledge has great potential to benefit object category recognition. First, semantic knowledge could guide the training model to learn a correct association between visual features and the categories. Second, semantics provide much richer information beyond the membership information given by the labels, in the form of inter-category and category-attribute distances, relations, and structures. Finally, the semantic knowledge scales well as the relations between categories become larger with an increasing number of categories. My goal in this thesis is to learn discriminative models for categorization that leverage semantic knowledge for object recognition, with a special focus on the semantic relationships among different categories and concepts. To this end, I explore three semantic sources, namely attributes, taxonomies, and analogies, and I show how to incorporate them into the original discriminative model as a form of structural regularization. In particular, for each form of semantic knowledge I present a feature learning approach that defines a semantic embedding to support the object categorization task. The regularization penalizes the models that deviate from the known structures according to the semantic knowledge provided. The first semantic source I explore is attributes, which are human-describable semantic characteristics of an instance. While the existing work treated them as mid-level features which did not introduce new information, I focus on their potential as a means to better guide the learning of object categories, by enforcing the object category classifiers to share features with attribute classifiers, in a multitask feature learning framework. This approach essentially discovers the common low-dimensional features that support predictions in both semantic spaces. Then, I move on to the semantic taxonomy, which is another valuable source of semantic knowledge. The merging and splitting criteria for the categories on a taxonomy are human-defined, and I aim to exploit this implicit semantic knowledge. Specifically, I propose a tree of metrics (ToM) that learns metrics that capture granularity-specific similarities at different nodes of a given semantic taxonomy, and uses a regularizer to isolate granularity-specific disjoint features. This approach captures the intuition that the features used for the discrimination of the parent class should be different from the features used for the children classes. Such learned metrics can be used for hierarchical classification. The use of a single taxonomy can be limited in that its structure is not optimal for hierarchical classification, and there may exist no single optimal semantic taxonomy that perfectly aligns with visual distributions. Thus, I next propose a way to overcome this limitation by leveraging multiple taxonomies as semantic sources to exploit, and combine the acquired complementary information across multiple semantic views and granularities. This allows us, for example, to synthesize semantics from both 'Biological', and 'Appearance'-based taxonomies when learning the visual features. Finally, as a further exploration of more complex semantic relations different from the previous two pairwise similarity-based models, I exploit analogies, which encode the relational similarities between two related pairs of categories. Specifically, I use analogies to regularize a discriminatively learned semantic embedding space for categorization, such that the displacements between the two category embeddings in both category pairs of the analogy are enforced to be the same. Such a constraint allows for a more confusing pair of categories to benefit from a clear separation in the matched pair of categories that share the same relation. All of these methods are evaluated on challenging public datasets, and are shown to effectively improve the recognition accuracy over purely discriminative models, while also guiding the recognition to be more semantic to human perception. Further, the applications of the proposed methods are not limited to visual object categorization in computer vision, but they can be applied to any classification problems where there exists some domain knowledge about the relationships or structures between the classes. Possible applications of my methods outside the visual recognition domain include document classification in natural language processing, and gene-based animal or protein classification in computational biology. / text
|
9 |
Apprentissage et noyau pour les interfaces cerveau-machine / Study of kernel machines towards brain-computer interfacesTian, Xilan 07 May 2012 (has links)
Les Interfaces Cerveau-Machine (ICM) ont été appliquées avec succès aussi bien dans le domaine clinique que pour l'amélioration de la vie quotidienne de patients avec des handicaps. En tant que composante essentielle, le module de traitement du signal détermine nettement la performance d'un système ICM. Nous nous consacrons à améliorer les stratégies de traitement du signal du point de vue de l'apprentissage de la machine. Tout d'abord, nous avons développé un algorithme basé sur les SVM transductifs couplés aux noyaux multiples afin d'intégrer différentes vues des données (vue statistique ou vue géométrique) dans le processus d'apprentissage. Deuxièmement, nous avons proposé une version enligne de l'apprentissage multi-noyaux dans le cas supervisé. Les résultats expérimentaux montrent de meilleures performances par rapport aux approches classiques. De plus, l'algorithme proposé permet de sélectionner automatiquement les canaux de signaux EEG utiles grâce à l'apprentissage multi-noyaux.Dans la dernière partie, nous nous sommes attaqués à l'amélioration du module de traitement du signal au-delà des algorithmes d'apprentissage automatique eux-mêmes. En analysant les données ICM hors-ligne, nous avons d'abord confirmé qu'un modèle de classification simple peut également obtenir des performances satisfaisantes en effectuant une sélection de caractéristiques (et/ou de canaux). Nous avons ensuite conçu un système émotionnel ICM par en tenant compte de l'état émotionnel de l'utilisateur. Sur la base des données de l'EEG obtenus avec différents états émotionnels, c'est-à -dire, positives, négatives et neutres émotions, nous avons finalement prouvé que l'émotion affectait les performances ICM en utilisant des tests statistiques. Cette partie de la thèse propose des bases pour réaliser des ICM plus adaptées aux utilisateurs. / Brain-computer Interface (BCI) has achieved numerous successful applications in both clinicaldomain and daily life amelioration. As an essential component, signal processing determines markedly the performance of a BCI system. In this thesis, we dedicate to improve the signal processing strategy from perspective of machine learning strategy. Firstly, we proposed TSVM-MKL to explore the inputs from multiple views, namely, from statistical view and geometrical view; Secondly, we proposed an online MKL to reduce the computational burden involved in most MKL algorithm. The proposed algorithms achieve a better classifcation performance compared with the classical signal kernel machines, and realize an automatical channel selection due to the advantages of MKL algorithm. In the last part, we attempt to improve the signal processing beyond the machine learning algorithms themselves. We first confirmed that simple classifier model can also achieve satisfying performance by careful feature (and/or channel) selection in off-line BCI data analysis. We then implement another approach to improve the BCI signal processing by taking account for the user's emotional state during the signal acquisition procedure. Based on the reliable EEG data obtained from different emotional states, namely, positive, negative and neutral emotions, we perform strict evaluation using statistical tests to confirm that the emotion does affect BCI performance. This part of work provides important basis for realizing user-friendly BCIs.
|
10 |
Machine Learning for Market Prediction : Soft Margin Classifiers for Predicting the Sign of Return on Financial AssetsAbo Al Ahad, George, Salami, Abbas January 2018 (has links)
Forecasting procedures have found applications in a wide variety of areas within finance and have further shown to be one of the most challenging areas of finance. Having an immense variety of economic data, stakeholders aim to understand the current and future state of the market. Since it is hard for a human to make sense out of large amounts of data, different modeling techniques have been applied to extract useful information from financial databases, where machine learning techniques are among the most recent modeling techniques. Binary classifiers such as Support Vector Machines (SVMs) have to some extent been used for this purpose where extensions of the algorithm have been developed with increased prediction performance as the main goal. The objective of this study has been to develop a process for improving the performance when predicting the sign of return of financial time series with soft margin classifiers. An analysis regarding the algorithms is presented in this study followed by a description of the methodology that has been utilized. The developed process containing some of the presented soft margin classifiers, and other aspects of kernel methods such as Multiple Kernel Learning have shown pleasant results over the long term, in which the capability of capturing different market conditions have been shown to improve with the incorporation of different models and kernels, instead of only a single one. However, the results are mostly congruent with earlier studies in this field. Furthermore, two research questions have been answered where the complexity regarding the kernel functions that are used by the SVM have been studied and the robustness of the process as a whole. Complexity refers to achieving more complex feature maps through combining kernels by either adding, multiplying or functionally transforming them. It is not concluded that an increased complexity leads to a consistent improvement, however, the combined kernel function is superior during some of the periods of the time series used in this thesis for the individual models. The robustness has been investigated for different signal-to-noise ratio where it has been observed that windows with previously poor performance are more exposed to noise impact.
|
Page generated in 0.1035 seconds