Return to search

A study on the pollutant pentachlorophenol-degradative genes and enzymes of oyster mushroom Pleurotus pulmonarius.

by Wang Pui. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 115-128). / Abstracts in English and Chinese. / Acknowledgments --- p.i / Abstract --- p.ii / List of Figures --- p.vi / List of Tables --- p.viii / Abbreviations --- p.ix / Chapter 1. --- Introduction Pg no / Chapter 1.1 --- Ligninolytic enzyme systems --- p.1 / Chapter 1.2 --- Three main ligninolytic enzymes --- p.3 / Chapter 1.2.1 --- Lignin peroxidases (LiP) --- p.3 / Chapter 1.2.2 --- Gene structure and Amino acid sequence structure --- p.7 / Chapter 1.2.3 --- Regulation of expression --- p.8 / Chapter 1.3. --- MnP --- p.8 / Chapter 1.3.1 --- General properties --- p.8 / Chapter 1.3.2 --- Gene structure and Amino acid sequence --- p.9 / Chapter 1.3.3 --- Regulation of Expression --- p.12 / Chapter 1.4 --- Laccase --- p.12 / Chapter 1.4.1 --- General Properties --- p.12 / Chapter 1.4.2 --- Gene structure and Amino acid sequence --- p.14 / Chapter 1.5 --- Pentachlorophenol (PCP) --- p.16 / Chapter 1.5.1 --- Production --- p.16 / Chapter 1.5.2 --- Toxicity --- p.15 / Chapter 1.5.3 --- Persistence --- p.19 / Chapter 1.6 --- Oyster mushroom --- p.22 / Chapter 1.7 --- Application of ligninolytic enzymes in bioremediation --- p.23 / Chapter 1.7.1 --- Genetic modification --- p.23 / Chapter 1.7.2 --- Characterization of enzymes properties --- p.25 / Chapter 1.7.3 --- Ligninolytic enzymes Purification and extraction --- p.26 / Chapter 1.7.4 --- Immobilization of ligninolytic enzymes --- p.26 / Chapter 1.8 --- Fermentation --- p.29 / Chapter 1.8.1 --- Different types of fermentation --- p.29 / Chapter 1.8.1.1 --- Submerged fermentation (SF) --- p.29 / Chapter 1.8.1.2 --- Solid State Fermentation (SSF) --- p.30 / Chapter 1.9 --- Proposal and experimental plan of the project --- p.33 / Chapter 1.9.1 --- Objectives --- p.34 / Chapter 2. --- Methods --- p.36 / Chapter 2.1 --- Materials / Chapter 2.1.1 --- Culture maintenance --- p.36 / Chapter 2.1.2 --- Preparation of Pentachlorophenol (PCP) stock solution --- p.36 / Chapter 2.2 --- Optimization of production of ligninolytic enzymes by effective PCP concentration --- p.37 / Chapter 2.2.1 --- Preparation of mycelial homogenate --- p.37 / Chapter 2.2.2 --- Incubation --- p.37 / Chapter 2.2.3 --- Specific enzyme assays --- p.38 / Chapter 2.2.3.1 --- Laccase --- p.38 / Chapter 2.2.3.2 --- Manganese peroxidase (MnP) --- p.39 / Chapter 2.2.3.3 --- Lignin peroxidase (LiP) --- p.39 / Chapter 2.2.3.4 --- Protein --- p.39 / Chapter 2.3 --- Cloning of specific PCP-degradative laccase cDNA --- p.40 / Chapter 2.3.1 --- Isolation of total RNA --- p.41 / Chapter 2.3.2 --- Spectrophotometric quantification and qualification of DNA and RNA --- p.41 / Chapter 2.3.3 --- First strand cDNA synthesis --- p.42 / Chapter 2.3.4 --- Amplification of laccase cDNA --- p.43 / Chapter 2.3.4.1 --- Design of primers for PCR reaction --- p.43 / Chapter 2.3.4.2 --- Polymerase chain reaction --- p.44 / Chapter 2.3.5 --- Agarose gel electrophoresis of DNA --- p.44 / Chapter 2.3.6 --- Purification of PCR products --- p.45 / Chapter 2.3.7 --- TA cloning of PCR products --- p.46 / Chapter 2.3.8 --- Preparation of Escherichia coli competent cells --- p.46 / Chapter 2.3.9 --- Bacterial transformation by heat shock --- p.47 / Chapter 2.3.10 --- Colony screening --- p.48 / Chapter 2.3.11 --- Mini-preparation of plasmid DNA --- p.48 / Chapter 2.3.12 --- Sequencing --- p.49 / Chapter 2.3.13 --- Identification of sequence --- p.51 / Chapter 2.4 --- Study of regulation temporal expression of laccase genes by PCP --- p.51 / Chapter 2.4.1 --- Semi-quantitative PCR --- p.51 / Chapter 2.4.1.1 --- Design of gene-specific primers --- p.51 / Chapter 2.4.1.2 --- Determination of suitable PCR cycles --- p.54 / Chapter 2.4.1.3 --- Normalization of the amount of RNA of each sample --- p.54 / Chapter 2.5 --- Quantification of residual PCP concentration --- p.55 / Chapter 2.5.1 --- Extraction of PCP --- p.55 / Chapter 2.5.2 --- High performance liquid chromatography --- p.55 / Chapter 2.5.3 --- Assessment criteria --- p.56 / Chapter 2.6 --- Effect of other componds on laccase activity and laccase expression --- p.56 / Chapter 2.6.1 --- Study of different isoform of laccase --- p.57 / Chapter 2.6.2 --- SDS-PAGE analysis of proteins --- p.58 / Chapter 2.7 --- Study of laccase expression and laccase activity in fruiting process of oyster mushroom --- p.59 / Chapter 2.8 --- Statistical analysis --- p.60 / Chapter 3. --- Results --- p.61 / Chapter 3.1 --- Production of Ligninolytic Enzymes by oyster mushroom / Chapter 3.1.1 --- Optimization of laccase production --- p.62 / Chapter 3.1.2 --- Optimization of MnP production --- p.64 / Chapter 3.1.3 --- Change of Protein content at different PCP concentration and time --- p.64 / Chapter 3.1.4 --- Change of specific activity at different PCP concentration and time --- p.64 / Chapter 3.1.5 --- Toxicity of PCP towards mycelial growth --- p.67 / Chapter 3.1.6 --- Enzyme productivities of laccase and MnP --- p.67 / Chapter 3.1.7 --- Change of % of residual PCP concentrations during 14 days --- p.70 / Chapter 3.2. --- Cloning of PCP-degradative laccase genes --- p.70 / Chapter 3.3 --- Regulation of expression of the laccase genes by PCP --- p.74 / Chapter 3.3.1 --- Determination of suitable PCR cycles --- p.74 / Chapter 3.3.2 --- Normalization of total RNA amount of different samples --- p.74 / Chapter 3.3.3 --- Regulation of temporal expression of the laccase genes by PCP --- p.74 / Chapter 3.4 --- Effect of other compounds and physiological status on laccase activity and expression --- p.81 / Chapter 3.5 --- Study of different forms of laccase --- p.86 / Chapter 4. --- Discussion --- p.93 / Chapter 4.1 --- Production of Ligninolytic enzymes by Pleurotus pulmonarius / Chapter 4.1.1 --- Optimization of laccase and MnP production by PCP --- p.95 / Chapter 4.2 --- Cloning of laccase genes --- p.97 / Chapter 4.2.1 --- Cloning strategy --- p.97 / Chapter 4.2.2 --- Analysis of Nucleotide sequence of Lac1 - Lac3 --- p.99 / Chapter 4.2.3 --- Characterization and comparison of deduced amino acid sequences of Lacl-Lac3 --- p.99 / Chapter 4.3 --- Regulation of expression of the laccase genes by PCP --- p.100 / Chapter 4.3.1 --- Regulation of temporal expression by PCP --- p.100 / Chapter 4.4 --- Effect of the potential inducers on laccase activity and expression --- p.103 / Chapter 4.5 --- Effect of the physiological status on laccase activity and expression --- p.105 / Chapter 4.5.1 --- Production of PCP-degradative laccase by Solid-state fermentation --- p.107 / Chapter 4.5.2 --- Uses of molecular probe in bioremediation --- p.107 / Chapter 4.6 --- Different isoforms of laccase --- p.109 / Chapter 4.7 --- Conclusion --- p.112 / Chapter 4.8 --- Further studies / Chapter 4.8.1 --- Confirmation of PCP-degradation by gene product of Lac1 and Lac2 --- p.114 / Chapter 4.8.2 --- Optimization of PCP-degradative laccases production by solid-state fermentation --- p.114 / Chapter 5. --- References --- p.115

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_324062
Date January 2002
ContributorsWang, Pui., Chinese University of Hong Kong Graduate School. Division of Environmental Science.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, ix, 128 leaves : ill. (some col.) ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0029 seconds