Return to search

Solving optimal PDE control problems : optimality conditions, algorithms and model reduction

This thesis deals with the optimal control of PDEs. After a brief introduction in the theory of elliptic and parabolic PDEs, we introduce a software that solves systems of PDEs by the finite elements method. In the second chapter we derive optimality conditions in terms of function spaces, i.e. a systems of PDEs coupled by some pointwise relations. Now we present algorithms to solve the optimality systems numerically and present some numerical test cases. A further chapter deals with the so called lack of adjointness, an issue of gradient methods applied on parabolic optimal control problems. However, since optimal control problems lead to large numerical schemes, model reduction becomes popular. We analyze the proper orthogonal decomposition method and apply it to our model problems. Finally, we apply all considered techniques to a real world problem.:Introduction
The state equation
Optimal control and optimality conditions
Algorithms
The \"lack of adjointness\"
Numerical examples
Efficient solution of PDEs and KKT- systems
A real world application
Functional analytical basics
Codes of the examples

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:23035
Date16 May 2016
CreatorsPrüfert, Uwe
ContributorsEiermann, Michael, Slawig, Thomas, Meyer, Christian, Technische Universität Bergakademie Freiberg
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds