Return to search

Development of diagnostics for the experimental studies of ignition in sprays

The need to ignite within a very short time the aircraft engines led to many studies. However, the ignition process is not yet fully understood. Many experimental studies are based on obtaining ignition probability at different points and in different average flow conditions but few have focused on the study of a single ignition event. The reason for the lack of full understanding is transient nature of the the ignition process, which depends on many physical parameters, before, during and after the deposition of spark energy. The purpose of this study is to develop the tools necessary to understand unique events by simultaneously measuring multiple parameters that affect the ignition process. A new technique of measurement, two-dimensional laser-induced plasma spectroscopy (2D-LIPS) was developed for the spatially resolved concentration gradients of species and energy in a laser-induced plasma. This technique is based on the use of two cameras, each provided with an interference filter centered on a transition atomic emission. This technique provides the initial size of plasma containing the minimum fuel concentration, thereby justifying the success/failure of an event. It was first validated in a mixing layer of air/nitrogen mixture to determine and resolve the spatial uncertainty of the technique. It was then applied to an aviation fuel injection system. The flow of air, preheated to 200_C, was set at 10 g/s and drops of dodecane having a Sauter mean diameter between 30 and 40 _m were inserted. This injector has a aerodynamic instability type Precessing Vortex Core around 550 Hz, measured by 2D-PIV on the droplets at 20 kHz. Simultaneous measurements 2D-LIPS and 2D-PIV at 20 kHz have established a scenario of ignition. A minimum concentration of dodecane and a minimum size of plasma are necessary but not sufficient for a successful ignition. The strength of PVC also appears to play a role in the fate of the initial nucleus. The study proposes to establish conditional probabilities of ignition using measurements by 2D LIPS. It is shown that for ignition tests having an unconditioned probability of 33% show a conditional probability of 88% through the 2D-LIPS measurements.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00969174
Date27 February 2013
CreatorsAgarwal, Tapish
PublisherEcole Centrale Paris
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0015 seconds