Return to search

Attribute Embedding for Variational Auto-Encoders : Regularization derived from triplet loss / Inbäddning av attribut för Variationsautokodare : Strukturering av det Latenta Rummet

Techniques for imposing a structure on the latent space of neural networks have seen much development in recent years. Clustering techniques used for classification have been used to great success, and with this work we hope to bridge the gap between contrastive losses and Generative models. We introduce an embedding loss derived from Triplet loss to show that attributes and information can be clustered in specific dimensions in the latent space of Variational Auto-Encoders. This allows control over the embedded attributes via manipulation of these latent space dimensions. This work also serves to take steps towards the usage of any data augmentation when applying Triplet loss to Variational Auto-Encoders. In this work three different Variational Auto-Encoders are trained on three different datasets to embed information in three different ways using this novel method. Our results show the method working to varying degrees depending on the implementation and the information embedded. Two experiments using image data and one using waveform audio shows that the method is modality invariant. / Tekniker för att införa en struktur i det latenta utrymmet i neurala nätverk har sett mycket utveckling under de senaste åren. Kluster metoder som används för klassificering har använts till stor framgång, och med detta arbete hoppas vi kunna brygga gapet mellan kontrastiva förlustfunktioner och generativa modeller. Vi introducerar en förlustfunktion för inbäddning härledd från triplet loss för att visa att attribut och information kan klustras i specifika dimensioner i det latenta utrymmet hos variationsautokodare. Detta tillåter kontroll över de inbäddade attributen via manipulering av dessa dimensioner i latenta utrymmet. Detta arbete tjänar också till att ta steg mot användningen av olika data augmentationer när triplet loss tillämpas på generativa modeller. Tre olika Variationsautokodare tränas på tre olika dataset för att bädda in information på tre olika sätt med denna nya metod. Våra resultat visar att metoden fungerar i varierande grad beroende på hur den tillämpas och vilken information som inbäddas. Två experiment använder bild-data och ett använder sig av ljud, vilket visar på att metoden är modalitetsinvariant.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-321530
Date January 2022
CreatorsE. L. Dahlin, Anton
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS), Stockholm : KTH Royal Institute of Technology
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2022:723

Page generated in 0.0031 seconds