• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pushing the boundary of Semantic Image Segmentation

Jain, Shipra January 2020 (has links)
The state-of-the-art object detection and image classification methods can perform impressively on more than 9k classes. In contrast, the number of classes in semantic segmentation datasets are fairly limited. This is not surprising , when the restrictions caused by the lack of labeled data and high computation demand are considered. To efficiently perform pixel-wise classification for c number of classes, segmentation models use cross-entropy loss on c-channel output for each pixel. The computational demand for such prediction turns out to be a major bottleneck for higher number of classes. The major goal of this thesis is to reduce the number of channels of the output prediction, thus allowing to perform semantic segmentation with very high number of classes. The reduction of dimension has been approached using metric learning for the semantic feature space. The metric learning provides us the mapping from pixel to embedding with minimal, still sufficient, number of dimensions. Our proposed approximation of groundtruth class probability for cross entropy loss helps the model to place the embeddings of same class pixels closer, reducing inter-class variabilty of clusters and increasing intra-class variability. The model also learns a prototype embedding for each class. In loss function, these class embeddings behave as positive and negative samples for pixel embeddings (anchor). We show that given a limited computational memory and resources, our approach can be used for training a segmentation model for any number of classes. We perform all experiments on one GPU and show that our approach performs similar and in some cases slightly better than deeplabv3+ baseline model for Cityscapes and ADE20K dataset. We also perform experiments to understand trade-offs in terms of memory usage, inference time and performance metrics. Our work helps in alleviating the problem of computational complexity, thus paving the way for image segmentation task with very high number of semantic classes. / De ledande djupa inlärningsmetoderna inom objektdetektion och bildklassificering kan hantera väl över 9000 klasser. Inom semantisk segmentering är däremot antalet klasser begränsat för vanliga dataset. Detta är inte förvånande då det behövs mycket annoterad data och beräkningskraft. För att effektivt kunna göra en pixelvis klassificering av c klasser, använder segmenteringsmetoder den s.k. korsentropin över c sannolikhets värden för varje pixel för att träna det djupa nätverket. Beräkningskomplexiteten från detta steg är den huvudsakliga flaskhalsen för att kunna öka antalet klasser. Det huvudsakliga målet av detta examensarbete är att minska antalet kanaler i prediktionen av nätverket för att kunna prediktera semantisk segmentering även vid ett mycket högt antal klasser. För att åstadkomma detta används metric learning för att träna slutrepresentationen av nätet. Metric learning metoden låter oss träna en representation med ett minimalt, men fortfarande tillräckligt antal dimensioner. Vi föreslår en approximation av korsentropin under träning som låter modellen placera representationer från samma klass närmare varandra, vilket reducerar interklassvarians och öka intraklarrvarians. Modellen lär sig en prototyprepresentation för varje klass. För inkärningskostnadsfunktionen ses dessa prototyper som positiva och negativa representationer. Vi visar att vår metod kan användas för att träna en segmenteringsmodell för ett godtyckligt antal klasser givet begränsade minnes- och beräkningsresurser. Alla experiment genomförs på en GPU. Vår metod åstadkommer liknande eller något bättre segmenteringsprestanda än den ursprungliga deeplabv3+ modellen på Cityscapes och ADE20K dataseten. Vi genomför också experiment för att analysera avvägningen mellan minnesanvändning, beräkningstid och segmenteringsprestanda. Vår metod minskar problemet med beräkningskomplexitet, vilket banar väg för segmentering av bilder med ett stort antal semantiska klasser.
2

Multi-modal Models for Product Similarity : Comparative evaluation of unimodal and multi-modal architectures for product similarity prediction and product retrieval / Multimodala modeller för produktlikhet

Frantzolas, Christos January 2023 (has links)
With the rapid growth of e-commerce, enabling effective product recommendation systems and improving product search for shoppers plays a crucial role in driving customer satisfaction. Traditional product retrieval approaches have mainly relied on unimodal models focusing on text data. However, to capture auxiliary context and improve the accuracy of similarity predictions, it is crucial to explore architectures that can leverage additional sources of information, such as images. This thesis compares the performance of multi- and unimodal methods for product similarity prediction and product retrieval. Both approaches are applied to two e-commerce datasets, one containing English and another containing Swedish product descriptions. A pre-trained multi-modal model called CLIP is used as a feature extractor. Different models are trained on CLIP embeddings using either text-only, image-only or image-text inputs. An extension of triplet loss with margins is tested, along with various training setups. Given the lack of similarity labels between products, product similarity prediction is studied by measuring the performance of a K-Nearest Neighbour classifier implemented on features extracted by the trained models. The thesis results demonstrate that multi-modal architectures outperform unimodal models in predicting product similarity. The same is true for product retrieval. Combining textual and visual information seems to lead to more accurate predictions than models relying on only one modality. The findings of this research have considerable implications for e-commerce platforms and recommendation systems, providing insights into the effectiveness of multi-modal models for product-related tasks. Overall, the study contributes to the existing body of knowledge by highlighting the advantages of leveraging multiple sources of information for deep learning. It also presents recommendations for designing and implementing effective multi-modal architectures. / I och med den snabba tillväxten av e-handel spelar att möjliggöra effektivare produktrekommendationssystem och att förbättra produktsök för konsumenter en viktig roll för att öka kundnöjdheten. Traditionella angreppsätt för produktsök har huvudsakligen tillförlitat sig på unimodala textmodeller. För att fånga ett bredare kontext och förbättra exaktheten av prediktioner av likhet mellan produkter är det viktigt att utforska arkitekturer som kan utnyttja fler informationskällor så som bilder. Den här avhandlingen jämför prestanda hos multimodala och unimodala metoder för produktlikhetsprediktioner och produktsök. Båda angreppsätten är tillämpade på två e-handelsdatamängder, en med engelska produktbeskrivningar och en med svenska. En förtränad multimodal modell kallad CLIP används för att skapa produktrepresentationer. Olika modeller har tränats på CLIPs representationer, antingen med enbart text, enbart bild eller både bild och text. En utökning av ett triplettmått med marginaler har testats som träningskriterium, i kombination med olika träningsinställningar. Givet en avsaknad av likhetsannoteringar mellan produkter så har produktlikhetsprediktion studerats genom att mäta prestandan av K-närmaste-grannar-klassificering genom att använda vektor-representationer från de tränade modellerna. Avhandlingens resultat visar att multimodala arkitekturer överträffar unimodala modeller för produktlikhetsprediktion. Att kombinera textuell och visuell information verkar leda till mer korrekta prediktioner jämfört med modeller som förlitar sig på endast en modalitet. Forskningsresultaten har markanta implikationer för e-handelsplattformar och rekommendationssystem, genom att tillhandahålla insikter i multimodala modellers effektivitet i produktrelaterade uppgifter. Överlag så bidrar studien till den existerande litteraturen genom att förtydliga fördelarna av att utnyttja flera informationskällor för djupinlärning. Den resulterar också i rekommendationer för att designa och implementera effektiva multimodala modellarkitekturer.
3

Attribute Embedding for Variational Auto-Encoders : Regularization derived from triplet loss / Inbäddning av attribut för Variationsautokodare : Strukturering av det Latenta Rummet

E. L. Dahlin, Anton January 2022 (has links)
Techniques for imposing a structure on the latent space of neural networks have seen much development in recent years. Clustering techniques used for classification have been used to great success, and with this work we hope to bridge the gap between contrastive losses and Generative models. We introduce an embedding loss derived from Triplet loss to show that attributes and information can be clustered in specific dimensions in the latent space of Variational Auto-Encoders. This allows control over the embedded attributes via manipulation of these latent space dimensions. This work also serves to take steps towards the usage of any data augmentation when applying Triplet loss to Variational Auto-Encoders. In this work three different Variational Auto-Encoders are trained on three different datasets to embed information in three different ways using this novel method. Our results show the method working to varying degrees depending on the implementation and the information embedded. Two experiments using image data and one using waveform audio shows that the method is modality invariant. / Tekniker för att införa en struktur i det latenta utrymmet i neurala nätverk har sett mycket utveckling under de senaste åren. Kluster metoder som används för klassificering har använts till stor framgång, och med detta arbete hoppas vi kunna brygga gapet mellan kontrastiva förlustfunktioner och generativa modeller. Vi introducerar en förlustfunktion för inbäddning härledd från triplet loss för att visa att attribut och information kan klustras i specifika dimensioner i det latenta utrymmet hos variationsautokodare. Detta tillåter kontroll över de inbäddade attributen via manipulering av dessa dimensioner i latenta utrymmet. Detta arbete tjänar också till att ta steg mot användningen av olika data augmentationer när triplet loss tillämpas på generativa modeller. Tre olika Variationsautokodare tränas på tre olika dataset för att bädda in information på tre olika sätt med denna nya metod. Våra resultat visar att metoden fungerar i varierande grad beroende på hur den tillämpas och vilken information som inbäddas. Två experiment använder bild-data och ett använder sig av ljud, vilket visar på att metoden är modalitetsinvariant.
4

Improving Zero-Shot Learning via Distribution Embeddings

Chalumuri, Vivek January 2020 (has links)
Zero-Shot Learning (ZSL) for image classification aims to recognize images from novel classes for which we have no training examples. A common approach to tackling such a problem is by transferring knowledge from seen to unseen classes using some auxiliary semantic information of class labels in the form of class embeddings. Most of the existing methods represent image features and class embeddings as point vectors, and such vector representation limits the expressivity in terms of modeling the intra-class variability of the image classes. In this thesis, we propose three novel ZSL methods that represent image features and class labels as distributions and learn their corresponding parameters as distribution embeddings. Therefore, the intra-class variability of image classes is better modeled. The first model is a Triplet model, where image features and class embeddings are projected as Gaussian distributions in a common space, and their associations are learned by metric learning. Next, we have a Triplet-VAE model, where two VAEs are trained with triplet based distributional alignment for ZSL. The third model is a simple Probabilistic Classifier for ZSL, which is inspired by energy-based models. When evaluated on the common benchmark ZSL datasets, the proposed methods result in an improvement over the existing state-of-the-art methods for both traditional ZSL and more challenging Generalized-ZSL (GZSL) settings. / Zero-Shot Learning (ZSL) för bildklassificering syftar till att känna igen bilder från nya klasser som vi inte har några utbildningsexempel för. Ett vanligt tillvägagångssätt för att ta itu med ett sådant problem är att överföra kunskap från sett till osynliga klasser med hjälp av någon semantisk information om klassetiketter i form av klassinbäddningar. De flesta av de befintliga metoderna representerar bildfunktioner och klassinbäddningar som punktvektorer, och sådan vektorrepresentation begränsar uttrycksförmågan när det gäller att modellera bildklassernas variation inom klass. I denna avhandling föreslår vi tre nya ZSL-metoder som representerar bildfunktioner och klassetiketter som distributioner och lär sig deras motsvarande parametrar som distributionsinbäddningar. Därför är bildklassernas variation inom klass bättre modellerad. Den första modellen är en Triplet-modell, där bildfunktioner och klassinbäddningar projiceras som Gaussiska fördelningar i ett gemensamt utrymme, och deras föreningar lärs av metrisk inlärning. Därefter har vi en Triplet-VAE-modell, där två VAEs tränas med tripletbaserad fördelningsinriktning för ZSL. Den tredje modellen är en enkel Probabilistic Classifier för ZSL, som är inspirerad av energibaserade modeller. När de utvärderas på de vanliga ZSLdatauppsättningarna, resulterar de föreslagna metoderna i en förbättring jämfört med befintliga toppmoderna metoder för både traditionella ZSL och mer utmanande Generalized-ZSL (GZSL) -inställningar.

Page generated in 0.0791 seconds