Spelling suggestions: "subject:"multimodal retrieval"" "subject:"multimodal etrieval""
1 |
Multi-modal Models for Product Similarity : Comparative evaluation of unimodal and multi-modal architectures for product similarity prediction and product retrieval / Multimodala modeller för produktlikhetFrantzolas, Christos January 2023 (has links)
With the rapid growth of e-commerce, enabling effective product recommendation systems and improving product search for shoppers plays a crucial role in driving customer satisfaction. Traditional product retrieval approaches have mainly relied on unimodal models focusing on text data. However, to capture auxiliary context and improve the accuracy of similarity predictions, it is crucial to explore architectures that can leverage additional sources of information, such as images. This thesis compares the performance of multi- and unimodal methods for product similarity prediction and product retrieval. Both approaches are applied to two e-commerce datasets, one containing English and another containing Swedish product descriptions. A pre-trained multi-modal model called CLIP is used as a feature extractor. Different models are trained on CLIP embeddings using either text-only, image-only or image-text inputs. An extension of triplet loss with margins is tested, along with various training setups. Given the lack of similarity labels between products, product similarity prediction is studied by measuring the performance of a K-Nearest Neighbour classifier implemented on features extracted by the trained models. The thesis results demonstrate that multi-modal architectures outperform unimodal models in predicting product similarity. The same is true for product retrieval. Combining textual and visual information seems to lead to more accurate predictions than models relying on only one modality. The findings of this research have considerable implications for e-commerce platforms and recommendation systems, providing insights into the effectiveness of multi-modal models for product-related tasks. Overall, the study contributes to the existing body of knowledge by highlighting the advantages of leveraging multiple sources of information for deep learning. It also presents recommendations for designing and implementing effective multi-modal architectures. / I och med den snabba tillväxten av e-handel spelar att möjliggöra effektivare produktrekommendationssystem och att förbättra produktsök för konsumenter en viktig roll för att öka kundnöjdheten. Traditionella angreppsätt för produktsök har huvudsakligen tillförlitat sig på unimodala textmodeller. För att fånga ett bredare kontext och förbättra exaktheten av prediktioner av likhet mellan produkter är det viktigt att utforska arkitekturer som kan utnyttja fler informationskällor så som bilder. Den här avhandlingen jämför prestanda hos multimodala och unimodala metoder för produktlikhetsprediktioner och produktsök. Båda angreppsätten är tillämpade på två e-handelsdatamängder, en med engelska produktbeskrivningar och en med svenska. En förtränad multimodal modell kallad CLIP används för att skapa produktrepresentationer. Olika modeller har tränats på CLIPs representationer, antingen med enbart text, enbart bild eller både bild och text. En utökning av ett triplettmått med marginaler har testats som träningskriterium, i kombination med olika träningsinställningar. Givet en avsaknad av likhetsannoteringar mellan produkter så har produktlikhetsprediktion studerats genom att mäta prestandan av K-närmaste-grannar-klassificering genom att använda vektor-representationer från de tränade modellerna. Avhandlingens resultat visar att multimodala arkitekturer överträffar unimodala modeller för produktlikhetsprediktion. Att kombinera textuell och visuell information verkar leda till mer korrekta prediktioner jämfört med modeller som förlitar sig på endast en modalitet. Forskningsresultaten har markanta implikationer för e-handelsplattformar och rekommendationssystem, genom att tillhandahålla insikter i multimodala modellers effektivitet i produktrelaterade uppgifter. Överlag så bidrar studien till den existerande litteraturen genom att förtydliga fördelarna av att utnyttja flera informationskällor för djupinlärning. Den resulterar också i rekommendationer för att designa och implementera effektiva multimodala modellarkitekturer.
|
Page generated in 0.0367 seconds