The interest for additive manufacturing techniques have in recent years increased considerably because of their association to good printing resolution, unique design possibilities and microstructure. In this master project, 316L stainless steel was printed using metal laser powder bed fusion in an attempt to find process parameters which yield good productivity while maintaining as good material properties as possible. Laser powder bed fusion works by melting a powder bed locally with a laser. When one slice of the material is done, the powder bed is lowered, new powder is added on top, and the process is repeated, building the components layer by layer. In this thesis, samples produced with a powder layer thickness of 80 μm and 100 μm has been investigated. Process parameters like laser power, scanning speed and hatch spacing were investigated in order to establish clear processing windows where the highest productivity and lowest porosity are obtained. The most common defects in all sample batches were lack of fusion, gas pores, and spatter related pores. The best samples with regard to both porosity and build rate were obtained at normalized build rates between 1,3-1,6 and porosity-values in the 0,01-0,1 % range.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-448263 |
Date | January 2021 |
Creators | Hahne, William |
Publisher | Uppsala universitet, Oorganisk kemi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | UPTEC K, 1650-8297 ; 21042 |
Page generated in 0.0019 seconds