High turbine inlet temperature becomes necessary for increasing thermal efficiency of modern gas turbines. To prevent failure of turbine components, advance cooling technologies have been applied to different portions of turbine blades.
The detailed film cooling effectiveness distributions along a rotor blade has been studied under combined effects of upstream trailing edge unsteady wake with coolant ejection by the pressure sensitive paint (PSP). The experiment is conducted in a low speed wind tunnel with a five blade linear cascade and exit Reynolds number is 370,000. The density ratios for both blade and trailing edge coolant ejection range from 1.5 to 2.0. Blade blowing ratios are 0.5 and 1.0 on suction surface and 1.0 and 2.0 on pressure surface. Trailing edge jet blowing ratio and Strouhal number are 1.0 and 0.12, respectively. Results show the unsteady wake reduces overall effectiveness. However, the unsteady wake with trailing edge coolant ejection enhances overall effectiveness. Results also show that the overall effectiveness increases by using heavier coolant for ejection and blade film cooling.
Leading edge film cooling has been investigated using PSP. There are two test models: seven and three-row of film holes for simulating vane and blade, respectively. Four film holes’ configurations are used for both models: radial angle cylindrical holes, compound angle cylindrical holes, radial angle shaped holes, and compound angle shaped holes. Density ratios are 1.0 to 2.0 while blowing ratios are 0.5 to 1.5. Experiments were conducted in a low speed wind tunnel with Reynolds number 100,900. The turbulence intensity near test model is about 7%. The results show the shaped holes have overall higher effectiveness than cylindrical holes for both designs. As increasing density ratio, density effect on shaped holes becomes evident. Radial angle holes perform better than compound angle holes as increasing blowing and density ratios. Increasing density ratio generally increases overall effectiveness for all configurations and blowing ratios. One exception occurs for compound angle and radial angle shaped hole of three-row design at lower blowing ratio. Effectiveness along stagnation row reduces as increasing density ratio due to coolant jet with insufficient momentum caused by heavier density coolant, shaped hole, and stagnation row.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/148288 |
Date | 14 March 2013 |
Creators | Li, Shiou-Jiuan |
Contributors | Han, Je-Chin |
Source Sets | Texas A and M University |
Detected Language | English |
Type | Thesis, text |
Format | application/pdf |
Page generated in 0.0016 seconds