Helicobacter pylori infects and persistently colonizes the stomach, which results in gastritis and in some individuals peptic ulcer disease or gastric cancer. Adherence of H. pylori to the epithelium is an important factor for development of disease. Attachment is mediated by the adhesins BabA and SabA that binds the ABO/Leb blood group antigens and sialylated glycoconjugates respectively. High-affinity attachment could be anticipated to be of disadvantage for H. pylori because epithelial cells have a fast turnover rate and the dislocated and shed epithelial cells would carry attached bacteria to the acidic gastric juice in the lumen. However, here we describe that H. pylori manage to adapt to this innate clearance mechanism by unique acid regulatory binding properties of its adhesins. We propose that pH regulated binding properties enable bacteria to detachment from host cells for chemotactic guided motility and successful return to the more neutral epithelium for a fresh restart of the infectious cycle. By comparison of BabA from different stomach loci we identified amino acid key position for acid regulated binding activity. Previous studies found lower prevalence of Leb-binding among H. pylori isolates from southern Europe compared to Sweden. Here we tested if the reduced prevalence of Leb-binding could be explained by a novel binding mode; in among Spanish strains, we identified S812 that demonstrates preference for multivalent binding to ABO antigens in glycolipids; we found that 812 BabA had drifted in its preferred binding epitope away from the consensus a1,2fucosylation and towards the blood group A and B derivatives. Such epitope drift might in particular optimize binding to ABO antigens in densely packed lipid rafts. In parallel, we studied the influence of BabA for disease progression by an inventory of gastric biopsies. BabA correlated both with the oncoprotein CagA, the VacAs1 toxin and, in addition, to severe disease progression. We further correlate BabA expression with positive secretor phenotype and stronger adhesion of H. pylori in vitro. For functional adherence studies in vitro, we constructed a recombinant Leb-expressing cell lineage that supports BabA mediated H. pylori attachment.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-60751 |
Date | January 2012 |
Creators | Henriksson, Sara |
Publisher | Umeå universitet, Institutionen för medicinsk kemi och biofysik, Umeå : Umeå university |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Umeå University medical dissertations, 0346-6612 ; 1524 |
Page generated in 0.0025 seconds