Organic solar cells promise electricity generation at very low cost, and higher installation flexibility as compared to inorganic solar cells. The lower cost is achieved by cheaper semiconductors and easier manufacturing processes. The flexibility is naturally given by these ultra-thin, amorphous layers. Also the power conversion efficiency can be high enough for many applications. The organic molecules have to withstand the constant excitation by photons, transport of energy in form of excitons and charge. A small but significant amount of these photons has energy over the absorption gap, the excess of energy must be released without breaking the molecular bonds. In consequence, the solar cells can also heat up to temperatures at above 80°C.
The objective of this work is to answer the question if the small molecules organic solar cells can be stable enough to operate under a very long time. The stability of organic doped layers in an organic solar cell is also addressed. This work starts with a general introduction followed by the description of the experimental procedures. The aging experiments of the solar cell were done with a self developed equipment. The fabrication of this equipment (a set of measurement boxes) was necessary to maintain the conditions, under which a solar cell can be aged, as constant as possible. The measurement boxes were used to control the electrical load of the cell, its temperature, the illumination intensity, and its electric connection to the IxV measurement equipment. A software package was also developed to control the equipment and to facilitate the work and visualization of the high volume of collected data. The model solar cells chosen for the aging experiments were donor-acceptor heterojunctions devices formed with the well-known materials C60 and ZnPc. Two basic different structures were analyzed, because they offered reasonable performance and potentially long lifetime: the flat heterojunction (FHJ) and the mixed heterojunction in a Metal-Insulator-p-Semiconductor (m-i-p) configuration. Variations of the FHJ and of the m-i-p structures are also used to verify the limits of the stability of electrically p- and n- doped organic semiconducting layers. The least stable solar cells are the FHJ devices. These devices show a fast initial decrease of all their characteristic conversion parameters but the Voc. After a few hundred hours, the saturation current (current under a reverse bias of 1 V) was almost stable. The saturation current is related to the number of absorbing centers, the decrease indicates that the degradation of the absorbing centers has stopped. With wavelength resolved external quantum efficiency measurements and chemical analysis, it was found that the degradation is related to the oxidation of C60. It was also shown that the use of organic dopants do not significantly affect the lifetime. The results show that the m-i-p solar cells are more stable than the FHJ devices. They are also stable under high temperatures up to 105°C. Outdoor testing also showed that the solar cells remained chemically, electrically and mechanically stable during a 900 h test.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:25296 |
Date | 10 May 2010 |
Creators | Lessmann, Rudolf |
Contributors | Leo, Karl, Lakner, Hubert, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0031 seconds