Return to search

Optimierte Methoden der Magnetresonanz-Spektroskopie zur molekularen Charakterisierung neuartiger Wirkstoffe gegen Infektionskrankheiten / Optimized methods in nuclear magnetic resonance spectroscopy for charakterization of novell agents against infectious diseases

In diesem Projekt wurde die Wechselwirkung des PPIase-Enzyms MIP mit Kollagen IV unter- sucht. MIP ist maßgeblich für die Infektiösität von Legionella pneumophila verantwortlich, einem Bakterium, welches im Menschen schwere Lungenentzündungen auslösen kann. Das Enzym zeigt eine hohe Affinität gegenüber einem kurzen Peptidsequenzabschnitt in Kolla- gen IV (genannt „P290”), welches unter anderem im Epithel der Lunge zu finden ist. Die Interaktionsoberfläche der Moleküle wurde durch den Einsatz eines paramagnetischen Spin-Labels in NMR-Experimenten charakterisiert. Mit Hilfe von Docking und Moleküldy- namiksimulationen konnte aus diesen Daten ein Modell des MIP-Kollagen-Komplexes be- rechnet werden. Es wurde gezeigt, dass MIP als Dimer in der Lage ist, nach Kollagen IV zu „greifen” und sich dann an das Molekül heranzuziehen. Wahrscheinlich dient dieser Mechanismus der Adhä- sion von L. pneumophila an die Wirtszelle. Neben der zuvor postulierten Destabilisierung von Kollagen IV durch MIP, welche hier nicht beobachtet wurde, könnte die Adhäsion ein wichtiger Faktor für die Virulenz von L. pneumophila sein. Weiterhin wurde die inhibitorische Wirkung des isolierten Peptids P290 auf die biologische PPIase-Aktivität von MIP untersucht. Durch NMR-Messungen und anschließenden Mole- küldynamiksimulationen konnte gezeigt werden, dass P290 sich stabil in die Bindungsta- sche von MIP einlagert und durch den Sequenzabschnitt -CYS130-PRO131---TRP134- das Enzym blockiert. Die übrigen Aminosäuren in P290 dienen der Stabilisierung des Kom- plexes und sorgen für die Selektivität von P290, welches, im Unterschied zu bekannten Wirkstoffen, das humane Homolog zu MIP nicht inhibiert. Die Vorhersagen der Simulatio- nen konnten durch ein Peptid Microarray und Messungen der enzymatischen Aktivität von MIP in PPIase-Assays bestätigt werden. Die Ergebnisse wurden zur Optimierung von P290 eingesetzt, indem die Peptidsequenz durch den Austausch zweier Aminosäuren verändert und das Molekül zu einem Ring geschlossen wurde. Die entstandene Struktur besitzt deut- lich verbesserte Bindungseigenschaften und könnte künftig als Basis für eine neue Klasse von Wirkstoffen gegen L. pneumophila dienen. In diesem Projekt wurde eine Methode zur Aufklärung der Molekülstruktur neuartiger Wirkstoffe gegen Malaria im Komplex mit ihrem paramagnetischen Zielmolekül etabliert und weiterentwickelt. Die Vorgehensweise leitet intermolekulare Distanzinformationen aus der sog. paramagnetischen Relaxation ab, einem Effekt, der den Einsatz klassischer Me- thoden zur Molekülstrukturaufklärung mittels NMR verhindert. Es werden drei Parameter durch NMR-Spektroskopie bestimmt: 1. die longitudinale Relaxationszeit der Wasserstoff- atome in Wirkstoffmolekül, 2. die effektive Korrelationszeit des Komplexes und 3. der Spin- Zustand des Eisenions im Zielmolekül. Mit Hilfe dieser Messmethode konnte die Komplexstruktur mehrerer bekannter Medika- mente gegen Malaria aufgeklärt werden. Weiterhin wurden zwei neue Klassen von Wirkstof- fen untersucht, die C,C-gekoppelten Naphthylisoquinolin-Alkaloide und die N,C-gekoppelte Naphthylisoquinolin-Alkaloide. In Übereinstimmung mit theoretischen Vorhersagen aus der Literatur lagern sich die Wirkstoffe stets um einen Winkel geneigt und in Richtung des Randes des Zielmoleküls verschoben an. Diese Konfiguration maximiert die attraktiven π- π-Wechselwirkungen zwischen den Molekülen. Aufgrund der gewonnenen Ergebnisse aus NMR, UV-Spektroskopie und Massenspektrome- trie konnte die Existenz eines bisher nicht bekannten Tetramer-Komplexes nachgewiesen werden, welcher eine wichtige Zwischenstufe in der Biokristallisation von Hämozoin durch die Malariaparasiten darstellen könnte, und Ansatzpunkte für den weiterhin nicht vollstän- dig bekannten Wirkmechanismus der meisten Antimalaria-Wirkstoffe liefert. Für die Naphthylisoquinolin-Alkaloide zeigte sich weiterhin, dass Wasser eine essenzielle Rolle in der Komplexbildung spielt. In Moleküldynamiksimulationen der N,C-gekoppelten Naphthylisoquinolin-Alkaloide konnte die Entstehung einer Wasserstoffbrücke zwischen Wirkstoff und Zielmolekül gezeigt werden, welche einen zusätzlichen Weg der Komplex- stabilisierung neben den bereits bekannten π-π-Wechselwirkungen aufzeigt. Die N,C-NIQs konnten erstmals auch bei einem pH-Wert von 5,6 beobachtet werden, einer chemischen Umgebung wie sie auch in-vivo in der Verdauungsvakuole des Malariaparasiten herrscht. / Summary Even in the 21st century, infectious diseases remain the predominant cause of death world- wide. According to reports of the World Health Organisation, 2 million people die of Malaria every year, most of which are children under the age of five years. Respiratory infections claim an additional 3.9 million lives. Other infections are held responsible for a total of more than 10 million deaths. Global climate change leads to the occurrence of tropical in- fections well beyond their former endemic regions. Additional challenges arise due to the growing number of resistant organisms, rendering most known treatments ineffective. To achieve sustained success in the fight against infectious diseases, a detailed understan- ding on the mode of action of newly developed substances on a molecular level is essential. In this thesis, magnetic resonance spectroscopy is used as a tool for molecular structure determination. My results may offer incentives for the development of new agents against infectious diseases and their continuous optimization. 4.1 The MIP-collagen IV complex The scope of this project was to investigate the interaction between the PPIase enzyme MIP and the NC1 (non-collagenous 1) domain of collagen IV. The MIP (macrophage infectivity potentiator) protein is the major virulence factor of Legionella pneumophila, a bacterium causing severe lung infections in humans. MIP exhibits high affinity towards a short peptide sequence in collagen IV (“P290”). Amongst others, this type of collagen is found in the epithelial cells of the lung. In this work, the interface of interaction between P290 and MIP was mapped using a pa- ramagnetic spin label in combination with nuclear magnetic resonance spectroscopy expe- riments. Labeled P290 strongly enhances the relaxation rates of individual amino acids in MIP, which are in the immediate vicinity (within 1 nm) of the spin label. The enhancedrelaxation rates were detected through T2-sensitive HSQC experiments. Subsequently, re- sults were incorporated in docking and molecular dynamic (MD) simulations to compute a model of the MIP-collagen IV complex. Results show the MIP dimer “grabbing” collagen IV with both enzymatic domains and pul- ling the molecules closer together. We suggest that this molecular adhesion mechanism may play a key role in the invasion of host tissue by L. pneumophila. A possible destabilization of collagen IV through the enzymatic activity of MIP, as suggested previously by other groups, was not observed. Additionally, our co-operation partners were able to demonstrate that P290, as an indi- vidual peptide, inhibits the biological PPIase activity of MIP, while leaving human homo- logue enzymes untouched. My findings from NMR measurements and subsequent MD si- mulations showed that P290 occupies the MIP binding pocket via the amino acid sequence -CYS130-PRO131---TRP134-. This sequence element is stabilized via the attachment of the terminal residues of P290 to the surface of MIP, thereby enabling P290 to distinguish between MIP and human enzymes. Based on these results, we constructed optimized versions of P290 by ring closure and repla- cement of two amino acids. Our co-operation partners showed that the resulting structures exhibit improved binding properties on a peptide microarray and may provide the basis for a new class of inhibitors targeting Legionella pneumophila. 4.2 Structure elucidation of paramagnetic complexes for- med by novel antimalarial agents We used paramagnetic NMR spectroscopy to characterize the formation of complexes of several antimalarial compounds with their presumed target “heme”. A paramagnetic Fe(III) ion is located at the center of heme, which influences the longitudinal relaxation rates of nearby proton spins. This effect interferes with common strategies for NMR structure elucidation, but in this study was taken advantage of in a newly developed method to map intermolecular distances with high precision using NMR inversion recovery experiments at 9.4 T, 14.1 T, 17.6 T, and 18.8 T. This method was utilized to solve the molecular structure of known drugs against Mala- ria as well as two new classes of antimalarial agents (the C,C-coupled naphthylisoquinoline alkaloids and the N,C-coupled naphthylisoquinoline alkaloids) in complex with their target molecule: heme. In accordance with theoretical predictions from the literature, we sho- wed that the drug molecules align in a configuration maximizing attractive π-π stacking interactions between the molecules. In combination with findings from NMR, UV spectroscopy and mass spectrometry, we de- monstrated the formation of a previously unknown tetrameric complex. This complex may represent an important step in the mode of action of antimalarial drugs. Additionally, results from NMR measurements and molecular dynamics simulations provided insight into the important role of H2O for complex stabilization. We were able to demonstrate the formation of a so far undescribed hydrogen bond between drug and target. Furthermore, it was possible to investigate the N,C-coupled naphthylisoquinoline alkaloids at pH 5.6, which exactly matches the chemical environment in the food vacuole of the ma- larial parasite in-vivo. All these findings may contribute to a deeper understanding of the mode of action of new antimalarial agents.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:3202
Date January 2009
CreatorsSchwedhelm, Kai Florian
Source SetsUniversity of Würzburg
Languagedeu
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0037 seconds