Return to search

Development and application of new NMR methods for paramagnetic inorganic materials / Développement et application de nouvelles méthodes de RMN pour les matériaux inorganiques et paramagnetiques

Une compréhension précise de la géométrie de coordination et de la structure électronique autour d’un ion métallique à l’intérieur des catalyseurs et des matériaux de batteries est essentielle pour contrôler ces systèmes complexes, modifier leur fonctionnement, et permettre la conception logique de sites améliorés. Cependant, la structure de ces systèmes n’est pas toujours accessible par des techniques de diffraction, et même si elle l’est, la structure électronique ne peut alors être déduite qu’indirectement des coordonnées atomiques. De ce fait, il est essentiel d’avoir une sonde directe de la structure électronique. L’objectif de cette thèse est l’étude des propriétés structurales et électroniques des sites mé- talliques de catalyseurs et de matériaux de batteries par Résonance Magnétique Nucléaire en rotation à l’angle magique (MAS NMR). La MAS NMR est une technique très performante pour l’étude des effets locaux dans les matériaux à l’état solide et permet de sonder directement la structure électronique des matériaux paramagnétiques à haute résolution. Néanmoins, cette ap- proche souffre d’une pauvre résolution et d’une sensibilité limitée pour les noyaux proches d’un site paramagnétique. Pour dépasser ces limitations, nous avons levé des verrous dans l’acquisition et l’interprétation de la MAS NMR en développant et appliquant de nouvelles méthodes pour l’étude de solides paramagnétiques basées sur des hautes fréquences de rotation (60-111 kHz MAS). Pour ce faire, un répertoire de séquences d’impulsion a été développé pour la détection et l’interprétation des effets paramagnétiques dans des solides cristallins et non cristallins. Le potentiel de cette méthodologie a été examiné pour l’élucidation de la géométrie locale et de la structure électronique autour des sites paramagnétiques de catalyseurs homogènes ou hétérogènes, et des matériaux de cathodes en phase mixte pour des batteries au Lithium. Nous voyons dans les méthodes présentées ici, un ensemble d’outils indispensables pour l’élucidation de nombreuses questions de la chimie moderne relatives à la structure et la fonction des sites métalliques. / A precise understanding of the coordination geometry and electronic structure around metal cen- ters in catalysts and battery materials is crucial in order to control these complex systems, modify their behavior, and allow rational design of improved sites. However, such systems are not al- ways amenable for diffraction-based structural determination, and even if they are, obtaining atom-specific electronic structure can only be inferred indirectly from the atomic coordinates. As such, a direct probe of the electronic structure is highly desired. The aim of the present thesis is the investigation of structural and electronic properties of metal sites in catalysts and battery materials by magic-angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy. MAS NMR is a powerful technique for the investigation of local effects in solid materials, and offers a direct probe of highly resolved electronic structures in paramagnetic solids. However, it suffers from limited sensitivity and resolution for nuclei lying close to a paramagnetic center in general. We address these limitations by first tackling some of the bottlenecks in the acquisition and interpretation of MAS NMR by developing and applying new methodologies to paramagnetic solids using ultra-fast (60-111) kHz MAS rates. A "toolkit" of suitably designed pulse sequences is assembled for broadband detection and interpretation of paramagnetic shifts in crystalline and non-crystalline solids. The potential of this methodology is explored for the elucidation of local geometry and electronic structure around paramagnetic metal sites in homogeneous and heterogeneous catalysts, and a set of mixed-phase Li-ion battery cathode materials. We anticipate that the approaches described herein form an essential tool to elucidate many outstanding questions about the structure and function of metal sites in modern chemistry.

Identiferoai:union.ndltd.org:theses.fr/2018LYSEN041
Date28 September 2018
CreatorsSanders, Kevin
ContributorsLyon, Pintacuda, Guido
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0022 seconds