Return to search

The ecology of heteroblasty in Acacia

Heteroblasty defines a dramatic change in leaf form and function along a shoot and is a prominent feature of the genus Acacia (Mimosaceae). Function of different leaf types in Acacia (i.e. compound leaf versus phyllode) is well established yet it is unknown whether heteroblasty is a plastic trait. A fully factorial designed experiment established the light environment, and not nutrients or water, had a significant influence on heteroblastic development. Compound leaves, which have higher specific leaf area (SLA), are retained for longer under low irradiance and, specifically, under a low Red:Far Red light environment. Plants grown in high intraspecific density environments also retained compound leaves for longer. Blue light signals and greater ultraviolet radiation had no effect on heteroblastic development. Heteroblasty is thought to aid in seedling establishment however across all experiments there was no consistent evidence of improved plant performance. Rather, there was an optimal allocation of biomass to organs where resources were most limiting and this was more influential in assisting seedling establishment. Lastly, a meta-analysis of a global dataset of leaf traits found compound leaves to be similar to simple leaves but offset towards the cheap to construct with fast returns region of the leaf economics spectrum.

Identiferoai:union.ndltd.org:ADTP/272533
Date January 2009
CreatorsForster, Michael Anthony, Biological, Earth & Environmental Sciences, Faculty of Science, UNSW
PublisherAwarded By:University of New South Wales. Biological, Earth & Environmental Sciences
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://unsworks.unsw.edu.au/copyright, http://unsworks.unsw.edu.au/copyright

Page generated in 0.0017 seconds