Return to search

Tillämpning av maskininlärning för att införa automatisk adaptiv uppvärmning genom en studie på KTH Live-In Labs lägenheter / Using machine learning to implement adaptive heating; A study on KTH Live-In Labs apartments

The purpose of this study is to investigate if it is possible to decrease Sweden's energy consumption through adaptive heating that uses climate data to detect occupancy in apartments using machine learning. The application of the study has been made using environmental data from one of KTH Live-In Labs apartments. The data was first used to investigate the possibility to detect occupancy through machine learning and was then used as input in an adaptive heating model to investigate potential benefits on the energy consumption and costs of heating. The result of the study show that occupancy can be detected using environmental data but not with 100% accuracy. It also shows that the features that have greatest impact in detecting occupancy is light and carbon dioxide and that the best performing machine learning algorithm, for the used dataset, is the Decision Tree algorithm. The potential energy savings through adaptive heating was estimated to be up to 10,1%. In the final part of the paper, it is discussed how a value creating service can be created around adaptive heating and its possibility to reach the market. / Syftet med den här rapporten är att undersöka om det är möjligt att sänka Sveriges energikonsumtion genom att i lägenheter införa adaptiv uppvärmning som baserar sig på närvaroklassificering av klimatdata. Klimatdatan som använts i studien är tagen från en av KTH Live-In Labs lägenheter. Datan användes först för att undersöka om det var möjligt att detektera närvaro  genom maskininlärning och sedan som input i en modell för adaptiv uppvärmning. I modellen för adaptiv uppvärmning undersöktes de potentiella besparingarna i energibehov och uppvärmningskostnader. Resultaten visar att de bästa featuresen för att klassificera närvaro är ljus och koldioxid. Den maskininlärningsalgoritm som presterade bäst på datasetet var Decision Tree algoritmen. Den potentiella energibesparingen genom införandet av adaptiv uppvärmning uppskattas vara upp till 10,1%. I rapportens sista del diskuteras det hur en värdeskapande tjänst kan skapas kring adaptiv uppvärmning samt dess potential att nå marknaden.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-281818
Date January 2020
CreatorsÅsenius, Ingrid
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageSwedish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2020:542

Page generated in 0.002 seconds