This thesis represents a theoretical and numerical investigation of the canonical duality theory, which has been recently proposed as an alternative to the classic and direct methods for non-convex variational problems. These non-convex variational problems arise in a wide range of scientific and engineering applications, such as phase transitions, post-buckling of large deformed beam models, nonlinear field theory, and superconductivity. The numerical discretization of these non-convex variational problems leads to global minimization problems in a finite dimensional space.
The primary goal of this thesis is to apply the newly developed canonical duality theory to two non-convex variational problems: a modified version of Ericksen's bar and a problem of Landau-Ginzburg type. The canonical duality theory is investigated numerically and compared with classic methods of numerical nature. Both advantages and shortcomings of the canonical duality theory are discussed. A major component of this critical numerical investigation is a careful sensitivity study of the various approaches with respect to changes in parameters, boundary conditions and initial conditions. / Ph. D.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/29095 |
Date | 07 October 2011 |
Creators | Yu, Haofeng |
Contributors | Mathematics, Iliescu, Traian, Burns, John A., De Vita, Raffaella, Borggaard, Jeffrey T. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | Yu_H_D_2011.pdf |
Page generated in 0.0051 seconds